
Simulink® Check™
User's Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Check™ User's Guide
© COPYRIGHT 2004–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release 2019a)
September 2019 Online only Revised for Version 4.4 (Release 2019b)
March 2020 Online only Revised for Version 4.5 (Release 2020a)
September 2020 Online only Revised for Version 5.0 (Release 2020b)
March 2021 Online only Revised for Version 5.1 (Release 2021a)
September 2021 Online only Revised for Version 5.2 (Release 2021b)
March 2022 Online only Revised for Version 6.0 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Get Started
1

Simulink Check Product Description . 1-2

Assess and Verify Model Quality . 1-3

Detect and Fix Model Advisor Check Violations . 1-4
Detect and Fix Model Advisor Check Violations While You Edit 1-5
Detect and Fix Model Advisor Check Violations Interactively 1-6

Collect Model Metric Data by Using the Metrics Dashboard 1-9
Analyze Metric Data . 1-9
Explore Metric Data . 1-10
Refactor Model Based on Metric Data . 1-11

Detect and Fix Compliance Issues . 1-12
Explore Compliance Results in the Dashboard . 1-12
Update Model to Fix Compliance Issues . 1-13
Rerun Model Metrics . 1-13

Refactor Models to Improve Component Reuse . 1-15
Identify and Replace Clones with Links to Library Blocks 1-15
Explore Other Options . 1-17

Simplify Model for Targeted Analysis of Complex Models Using Model
Slicer Tool . 1-19

Assess Requirements-Based Testing Quality by Using the Model Testing
Dashboard . 1-22

Open the Project and Model Testing Dashboard 1-22
Assess Traceability of Artifacts . 1-23
Explore Metric Results for a Unit . 1-24
Track Testing Status of a Project Using the Model Testing Dashboard . . . 1-25

Verification and Validation
2

Test Model Against Requirements and Report Results 2-2
Requirements – Test Traceability Overview . 2-2
Display the Requirements . 2-2
Link Requirements to Tests . 2-3
Run the Test . 2-4
Report the Results . 2-5

iii

Contents

Analyze a Model for Standards Compliance and Design Errors 2-7
Standards and Analysis Overview . 2-7
Check Model for Style Guideline Violations and Design Errors 2-7

Perform Functional Testing and Analyze Test Coverage 2-9
Incrementally Increase Test Coverage Using Test Case Generation 2-9

Analyze Code and Test Software-in-the-Loop . 2-12
Code Analysis and Testing Software-in-the-Loop Overview 2-12
Analyze Code for Defects, Metrics, and MISRA C:2012 2-12
Test Code Against Model Using Software-in-the-Loop Testing 2-17

Checking Systems Interactively
3

Check Model Compliance by Using the Model Advisor 3-2
Model Advisor Overview . 3-2
Run Model Advisor Checks and Review Results . 3-4

Check Model Compliance Using Edit-Time Checking 3-6
Configure Your Model to Use Edit-Time Checking 3-6
View and Customize the Edit-Time Checks in a Model Advisor Configuration

. 3-8

Exclude Blocks from the Model Advisor Check Analysis 3-9
Model Advisor Exclusion Overview . 3-9
Create Model Advisor Exclusions . 3-11
Save Model Advisor Exclusions in a Model File . 3-11
Save Model Advisor Exclusions in Exclusion File 3-12
Check Selector . 3-12
Review Model Advisor Exclusions . 3-13
Manage Exclusions . 3-14
Compatibility Considerations after R2020b . 3-14
Programmatically Change Model Advisor Exclusions 3-15

Justify Violated Blocks from the Model Advisor Check Analysis 3-16
Model Advisor Justification Overview . 3-16
Create Model Advisor Justifications . 3-16
Manage Justifications . 3-18

Generate Model Advisor Reports . 3-20
Generate Results Report After Executing Model Advisor Checks 3-20
Modify Template for Model Advisor Check Results Report 3-20

Transform Model to Variant System . 3-23
Example Model . 3-23
Perform Variant Transform on Example Model . 3-24
Model Transformation Limitations . 3-26

iv Contents

Improve Code Efficiency by Merging Multiple Interpolation Using
Prelookup Blocks . 3-27

Merge Interpolation Using Prelookup Blocks Using the Model Transformer
App . 3-27

Merge Interpolation Using Prelookup Blocks Programmatically 3-30
Conditions and Limitations . 3-32

Enable Component Reuse by Using Clone Detection 3-33
Exact Clones and Similar Clones . 3-33
Specify Where to Detect Clones . 3-33
Identify Exact and Similar Clones . 3-33
Replace Clones . 3-37
Identify and Replace Clones in Model Libraries 3-38
Check the Equivalency of the Model . 3-38

Improve Model Readability by Eliminating Local Data Store Blocks . . . 3-40
Example Model . 3-40
Replace Data Store Blocks . 3-41
Limitations . 3-43

Improve Efficiency of Simulation by Optimizing Prelookup Operation of
Lookup Table Blocks . 3-44

Example Model . 3-44
Merge Prelookup Operation . 3-45
Conditions and Limitations . 3-47

Model Checks for DO-178C/DO-331 Standard Compliance 3-49
Model Checks for High Integrity Systems Modeling 3-50

Model Checks for DO-254 Standard Compliance 3-56
Model Checks for High Integrity Systems Modeling 3-56
HDL Code Advisor Checks . 3-58

Model Checks for MAB and JMAAB Compliance 3-61
Accessing the MAB and JMAAB Model Advisor Checks 3-61
Modeling Guidelines and Model Advisor Checks for MAB and JMAAB . . . 3-61

Model Checks for High Integrity Systems Modeling 3-70
High Integrity Systems Modeling Checks . 3-50

Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN
50128/EN 50657 Standard Compliance . 3-75

Model Checks for High Integrity Systems Modeling 3-76

Model Checks for MISRA C:2012 Compliance . 3-82

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961
Standards) . 3-83

Model Checks for Requirements Links . 3-85

Replace Exact Clones with Subsystem Reference 3-86
Identify Exact Clones . 3-86
Replace Clones . 3-88
Check the Equivalency of the Model . 3-88

v

Detect and Replace Subsystem Clones Programmatically 3-90
Identify Clones in a Model . 3-90
Replace Clones in a Model . 3-92
Identify Clones Using Subsystem Reference Blocks 3-92
Replace Clones with Conditions . 3-94
Check the Equivalency of the Model . 3-95

Find Clones Across the Model . 3-96
Identify Clones by Using the App . 3-96
Identify Clones Programmatically . 3-97

Detect Clones Programmatically on Multiple Models Across Different
Folders . 3-99

Detect and Replace Clones Programmatically in a Loop on Multiple
Models . 3-102

Running Clone Detection Custom Script in a Project 3-104

Run Custom Model Advisor Checks on Architecture Models 3-106

Check Systems Programmatically
4

Checking Systems Programmatically . 4-2

Create a Function to Check Multiple Systems . 4-3

Archive and View Results . 4-6
Archive Results . 4-6
View Results in Command Window . 4-6
View Results in Model Advisor Command-Line Summary Report 4-6
View Results in Model Advisor GUI . 4-7
View Model Advisor Report . 4-7

Archive and View Model Advisor Run Results . 4-9

Model Metrics
5

Collect and Explore Metric Data by Using the Metrics Dashboard 5-2
Metrics Dashboard Widgets . 5-3
Size . 5-4
Modeling Guideline Compliance . 5-5
Architecture . 5-6
Metric Thresholds . 5-7
Dashboard Limitations . 5-7

Collect Model Metrics Using the Model Advisor . 5-9

vi Contents

Create a Custom Model Metric for Nonvirtual Block Count 5-11

Collect Model Metrics Programmatically . 5-14

Model Metric Data Aggregation . 5-18
How Model Metric Aggregation Works . 5-18
Access Aggregated Metric Data . 5-19

Identify Modeling Clones with the Metrics Dashboard 5-22

Collect Compliance Data and Explore Results in the Model Advisor . . . 5-24

Collect Metric Data Programmatically and View Data Through the
Metrics Dashboard . 5-27

Fix Metric Threshold Violations in a Continuous Integration Systems
Workflow . 5-30

Project Setup . 5-30
GitLab Setup . 5-32
Jenkins Setup . 5-32
Continuous Integration Workflow . 5-33

Customize Metrics Dashboard Layout and Functionality 5-36

Compare Model Complexity and Code Complexity Metrics 5-47
Metric Threshold Values . 5-47
Comparing Code and Model Complexity Metric Results 5-47

Explore Status and Quality of Testing Activities Using the Model Testing
Dashboard . 5-51

Fix Requirements-Based Testing Issues . 5-61

Manage Requirements-Based Testing Artifacts for Analysis in the Model
Testing Dashboard . 5-68

Manage Artifact Files in a Project . 5-69
Trace Dependencies Between Project Files and Identify Outdated Metric

Results . 5-69
Trace Artifacts to Units for Model Testing Analysis 5-70
Collect Metric Results . 5-74

Assess the Completeness of Requirements-Based Testing in Accordance
with ISO 26262 . 5-76

Open the Model Testing Dashboard and Collect Metric Results 5-76
Test Case Review . 5-77
Test Results Review . 5-79
Unit Verification in Accordance with ISO 26262 5-83

Collect Metrics on Model Testing Artifacts Programmatically 5-86
Open the Project . 5-86
Collect Metric Results . 5-86
Access Results . 5-87

Categorize Models in a Hierarchy as Components or Units 5-90
Units in the Model Testing Dashboard . 5-90

vii

Components in the Model Testing Dashboard . 5-90
Specify Models as Components and Units . 5-91

Include Subsystem-Level Test Results in the Model Testing Dashboard
. 5-93

Resolve Missing Artifacts, Links, and Results in the Model Testing
Dashboard . 5-96

Issue . 5-96
Possible Solutions . 5-96

Collecting Requirements-Based Testing Metrics Using Continuous
Integration . 5-104

Hide Requirements Metrics in the Model Testing Dashboard and in API
Results . 5-107

Open the Dashboard for the Project . 5-107
Hide Requirements Metrics in the Model Testing Dashboard 5-107
Hide Requirements Metrics in the API Results 5-108

Create Model Advisor Checks
6

Overview of the Customization File for Custom Checks 6-2

Common Utilities for Creating Checks . 6-4

Review a Model Against Conditions that You Specify with the Model
Advisor . 6-5

Create an sl_customization Function . 6-5
Create the Check Definition Function for a Pass/Fail Check with No Fix

Action . 6-5
Create the Check Definition Function for an Informational Check 6-6
Run the Custom Checks in the Model Advisor . 6-7

Define Edit-Time Checks to Comply with Conditions that You Specify with
the Model Advisor . 6-9

Register and Define the Custom Edit-Time Checks 6-9
Run the Edit-Time Checks on a Model . 6-13
Performance Considerations for Custom Edit-Time Checks 6-15

Define Custom Edit-Time Checks that Fix Issues in Architecture Models
. 6-17

Create a Simple Architecture Model . 6-17
Create the Custom Edit-Time Check . 6-18
Create a Custom Edit-Time Check Configuration 6-19

Fix a Model to Comply with Conditions that You Specify with the Model
Advisor . 6-21

Create the sl_customization File . 6-21
Create the Check Definition File . 6-21
Run the Check . 6-24

viii Contents

Create Model Advisor Check for Model Configuration Parameters 6-27
Create a Data File for a Configuration Parameter Check 6-27
Create Check for Diagnostics Pane Model Configuration Parameters . . . 6-29
Data File for Configuration Parameter Check . 6-30

Define Model Advisor Checks for Supported and Unsupported Blocks and
Parameters . 6-38

Define Custom Model Advisor Checks . 6-45
Create sl_customization Function . 6-45
Register Custom Checks . 6-45
Create Check Definition Function . 6-46

Define the Compile Option for Custom Model Advisor Checks 6-50
Checks that Evaluate the Code Generation Readiness of the Model 6-50
Create Custom Check to Evaluate Active and Inactive Variant Paths from a

Model . 6-51

Exclude Blocks From Custom Checks . 6-57

Create Help for Custom Model Advisor Checks . 6-59
See Also . 6-59

Model Advisor Customization
7

Customize the Configuration of the Model Advisor Overview 7-2

Use the Model Advisor Configuration Editor to Customize the Model
Advisor . 7-3

Overview of the Model Advisor Configuration Editor 7-3
Open the Model Advisor Configuration Editor . 7-4
Specify a Default Configuration File . 7-5
Customize the Model Advisor Configuration . 7-5
Suppress Warning Message for Missing Checks . 7-7
Use the Model Advisor Configuration Editor to Create a Custom Model

Advisor Configuration . 7-7

Programmatically Customize Tasks and Folders for the Model Advisor
. 7-12

Customization File Overview . 7-12
Register Tasks and Folders . 7-12
Define Custom Tasks . 7-13
Define Custom Folders . 7-14

Programmatically Create Procedural-Based Configurations 7-16
Create Procedural-Based Configurations . 7-16

Update the Environment to Include Your Custom Configuration 7-19

Load and Associate a Custom Configuration with a Model 7-20

ix

Deploy Custom Configurations . 7-22

Create and Deploy a Model Advisor Custom Configuration 7-23

Model Slicer
8

Highlight Functional Dependencies . 8-2

Highlight Dependencies for Multiple Instance Reference Models 8-8

Refine Highlighted Model . 8-12
Define a Simulation Time Window . 8-12
Exclude Blocks . 8-16
Exclude Inputs of a Switch Block . 8-19

Refine Dead Logic for Dependency Analysis . 8-22
Analyze the Dead Logic . 8-22

Create a Simplified Standalone Model . 8-28

Highlight Active Time Intervals by Using Activity-Based Time Slicing . 8-29
Highlighting the Active Time Intervals of a Stateflow State or Transition

. 8-29
Activity-Based Time Slicing Limitations and Considerations 8-35
Stateflow State and Transition Activity . 8-35

Simplify a Standalone Model by Inlining Content 8-36

Workflow for Dependency Analysis . 8-38
Dependency Analysis Workflow . 8-38
Dependency Analysis Objectives . 8-38

Configure Model Highlight and Sliced Models . 8-40
Model Slice Manager . 8-40
Model Slicer Options . 8-40
Storage Options . 8-40
Refresh Highlighting Automatically . 8-41
Sliced Model Options . 8-41
Trivial Subsystems . 8-41
Inline Content Options . 8-42

Model Slicer Considerations and Limitations . 8-43
Model Compilation . 8-43
Model Highlighting and Model Editing . 8-43
Standalone Sliced Model Generation . 8-43
Sliced Model Considerations . 8-43
Port Attribute Considerations . 8-44
Simulation Time Window Considerations . 8-45
Simulation-based Sliced Model Simplifications . 8-45
Starting Points Not Supported . 8-46
Model Slicer Support Limitations for Simulink Software Features 8-46

x Contents

Model Slicer Support Limitations for Simulation Stepper 8-46
Model Slicer Support Limitations for Simulink Blocks 8-46
Model Slicer Support Limitations for Stateflow . 8-47

Using Model Slicer with Stateflow . 8-49
Model Slicer Highlighting Behavior for Stateflow Elements 8-49
Using Model Slicer with Stateflow State Transition Tables 8-49
Support Limitations for Using Model Slicer with Stateflow 8-49

Isolating Dependencies of an Actuator Subsystem 8-51
Choose Starting Points and Direction . 8-51
View Precedents and Generate Model Slice . 8-52

Isolate Model Components for Functional Testing 8-55
Isolate Subsystems for Functional Testing . 8-55
Isolate Referenced Model for Functional Testing 8-57

Refine Highlighted Model by Using Existing .slslicex or Dead Logic
Results . 8-63

Simplification of Variant Systems . 8-65
Use the Variant Reducer to Simplify Variant Systems 8-65
Use Model Slicer to Simplify Variant Systems . 8-65

Programmatically Resolve Unexpected Behavior in a Model with Model
Slicer . 8-66

Refine Highlighted Model Slice by Using Model Slicer Data Inspector . 8-74
Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

. 8-74

Debug Slice Simulation by Using Fast Restart Mode 8-81
Simulate and Debug a Test Case in a Model Slice 8-81

Isolate Referenced Model for Functional Testing 8-88

Analyze the Dead Logic . 8-92

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector
. 8-97

Programmatically Generate I/O Dependency Matrix 8-103

Observe Impact of Simulink Parameters Using Model Slicer 8-105

xi

Get Started

• “Simulink Check Product Description” on page 1-2
• “Assess and Verify Model Quality” on page 1-3
• “Detect and Fix Model Advisor Check Violations” on page 1-4
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-9
• “Detect and Fix Compliance Issues” on page 1-12
• “Refactor Models to Improve Component Reuse” on page 1-15
• “Simplify Model for Targeted Analysis of Complex Models Using Model Slicer Tool” on page 1-19
• “Assess Requirements-Based Testing Quality by Using the Model Testing Dashboard”

on page 1-22

1

Simulink Check Product Description
Measure design quality, track verification activities, and verify compliance with standards

Simulink Check analyzes your models, requirements, and tests to assess design quality and
compliance with standards. It provides industry-recognized checks and metrics that identify modeling
standard and guideline violations as you design. Supported high-integrity software development
standards include ISO 26262, DO-178C, DO-254, IEC 61508, ISO 25119, IEC 62304, and MathWorks
Advisory Board (MAB) style guidelines. Simulink Check also supports secure coding standards such
as CERT C, CWE, and ISO/IEC TS 17961. You can create custom checks to comply with your own
standards or guidelines that can identify compliance issues right in the editor.

Simulink Check provides metrics such as size and complexity for assessing the status and quality of
your design. The model testing dashboard consolidates data from your requirements-based testing
activities to track testing status. Automatic model refactoring lets you replace modeling clones,
reduce design complexity, and identify reusable content. The Model Slicer tool isolates problematic
behavior in models and generates simplified models for debugging.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508) and DO Qualification Kit (for DO-178).

1 Get Started

1-2

Assess and Verify Model Quality
With the Simulink Check product, you can use industry-recognized checks and metrics that identify
standard and guideline violations. Supported high-integrity software development standards include
the DO-178, ISO 26262, IEC 61508, IEC 62304, ISO 25119, and MathWorks Advisory Board (MAB)
style guidelines. Use edit-time checking, to identify compliance issues as you develop your model.
And, when you are done editing, to assess whether your model complies with size, architecture, and
compliance requirements, run the Metrics Dashboard. The Metrics Dashboard contains widgets that
visualize the metric data. To obtain detailed results, drill in to the data.

From the Metrics Dashboard, you can fix compliance issues by launching the Model Advisor. To
determine whether you can automatically refactor a model to increase component reuse, launch the
Clone Detector.

Functions and classes are available for customizing the Metrics Dashboard and Model Advisor. For
example, you can write your custom checks and use the Model Advisor Configuration editor to create
a custom configuration. Use the Metrics Dashboard functions and classes to configure the compliance
metric widgets to point to the custom configuration.

In this tutorial, you will learn to:

1 Address Model Advisor compliance issues.
2 Run the Metrics Dashboard to obtain and analyze metric data.
3 Address MAB and High Integrity check violations from the Metrics Dashboard.
4 Refactor a model to improve component reuse by launching the Clone Detector app from the

Metrics Dashboard.

At the end of the tutorial, there are links to topics that provide more information.

To start the tutorial, see “Detect and Fix Model Advisor Check Violations” on page 1-4.

 Assess and Verify Model Quality

1-3

Detect and Fix Model Advisor Check Violations
The Model Advisor checks your model or subsystem for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation and inefficient generated code and code that is
unsuitable for safety-critical applications. The Model Advisor checks can help you verify compliance
with industry standards and guidelines. By using the Model Advisor, you can implement consistent
modeling guidelines across projects and development teams.

A subset of Model Advisor checks support edit-time checking. With edit-time checking, you can check
for model conditions while you develop a model. Highlighted blocks in the model editor window alert
you to issues in the model.

This tutorial uses the example model sldemo_fuelsys. This model is an air-fuel ratio control system
designed with Simulink and Stateflow®.

The figures show portions of the sldemo_fuelsys model. The top-level model is a closed-loop
system that consists of a plant (Engine Gas Dynamics) and a controller (the Fuel Rate Control
subsystem). The plant allows engineers to validate the controller through simulation early in the
design cycle. The control logic is a Stateflow chart that specifies the different modes of operation.

1 Get Started

1-4

Detect and Fix Model Advisor Check Violations While You Edit
1 Set your current folder to a writeable directory.
2 Open the model sldemo_fuelsys by typing this command:

openExample('sldemo_fuelsys')

 Detect and Fix Model Advisor Check Violations

1-5

3 To use edit-time checking, on the Modeling tab, select Model Advisor > Edit-Time Checks.
The Configuration Parameters dialog box opens and you select the check box for Edit-Time
Checks.

The highlighted blocks and subsystems indicate compliance issues.
4 Pause over a highlighted block and click the warning icon. A dialog box provides a description of

the warning. For detailed documentation on the check that detected the issue, click the question
mark. These blocks contain edit-time warnings because of incorrect block names.

To exclude a block from a selected check, you can click Suppress.
5 Open the Engine Gas Dynamics subsystem by double-clicking it. Pause over the air/fuel

ratio output port and click the warning icon.

This output port returns warnings because its name violates two checks: “Check for unsupported
block names” and “Check port block names”.

6 Address the warnings by replacing the / symbol and the space in the block name with
underscores. The block is no longer highlighted.

7 Address the warnings for the other highlighted blocks in the Engine Gas Dynamics subsystem.

Detect and Fix Model Advisor Check Violations Interactively
1 On the Modeling tab, select Model Advisor.
2 Select the top-level model sldemo_fuelsys from the System Hierarchy and click OK.
3 In the left pane, in the By Product > Simulink Check > Model Standards > DO-178C/

DO-331 folder, select:

• Check safety-related diagnostic settings for solvers
• Check safety-related diagnostic settings for sample time

1 Get Started

1-6

• Check safety-related optimization settings for logic signals
4 Right-click DO-178C/DO-331 Checks node, and then select Run Selected Checks.

5 To review the configuration parameters that are not set to the recommended values, click Check
safety-related diagnostic settings for solvers.

6 To update the parameters to the recommended values, in the toolstrip, click Fix.

 Detect and Fix Model Advisor Check Violations

1-7

Action Report window displays the Model Advisor updates the parameters to the recommended
values and details the result.

7 Repeat step 6 for the Check safety-related diagnostic settings for sample time check.
8 To verify that your model now passes, rerun the checks.
9 To generate a results report of the Simulink Check checks, select the DO-178C/DO-331 Checks

node, and then, in the toolstrip, click Report.
10 Close the Model Advisor.

Next, collect metric data on the model and fix other compliance issues by using the Metrics
Dashboard.

1 Get Started

1-8

Collect Model Metric Data by Using the Metrics Dashboard
To collect model metric data and assess the design status and quality of your model, use the Metrics
Dashboard. The Metrics Dashboard provides a view into the size, architecture, and guideline
compliance of your model.

1 Return to the top level of the sldemo_fuelsys model.
2 On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.
3 To collect metric data for this model, click the All Metrics icon.

Analyze Metric Data
The Metrics Dashboard contains widgets that visualize metric data in these categories: size, modeling
guideline compliance, and architecture. By default, some widgets contain metric threshold values.
These values specify whether your metric data is compliant (which appears green in the widget) or
produces a warning (which appears yellow in the widget). Metrics that do not have threshold values
appear blue. Functions and classes are available for specifying noncompliant ranges and for changing
the threshold values.

In the Architecture section of the dashboard, locate the Model Complexity widget. To view tooltips,
pause over each vertical bar. This widget is a visual representation of the distribution of complexity

 Collect Model Metric Data by Using the Metrics Dashboard

1-9

across the components in the model hierarchy. For each complexity range, a colored bar indicates the
number of components that fall within that range. Darker green colors indicate more components. In
this case, several components have a cyclomatic complexity value in the lowest range, while just one
component has a higher complexity. This component has a cyclomatic complexity above 30.
Components with cyclomatic complexity above 30 return warnings. For more information, see
“Cyclomatic complexity metric”

Explore Metric Data
To explore metric data in more detail, click an individual metric widget. For your selected metric, a
table displays the value, aggregated value, and measures (if applicable) at the model component
level. From the table, the dashboard provides traceability and hyperlinks to the data source so that
you can get detailed results.

To analyze the model complexity details at the model, subsystem, and chart level, click a bar in the
Model Complexity widget. In this example, the control_logic chart has a cyclomatic complexity
value of 51, which is yellow because it is in the warning range.

To see this component in the model, click the control_logic hyperlink.

1 Get Started

1-10

Refactor Model Based on Metric Data
Once you have used the dashboard to determine which components you must modify to meet quality
standards, you can refactor your model. For example, you could refactor the control_logic chart
by moving the logic into atomic subcharts to reduce the complexity for that component.

Next, you will use the Modeling Guideline Compliance widgets to fix issues associated with high-
integrity Model Advisor checks.

 Collect Model Metric Data by Using the Metrics Dashboard

1-11

Detect and Fix Compliance Issues
When you collect metric data, the Metrics Dashboard runs the MAB and high-integrity Model Advisor
checks in the background. The Modeling Guideline Compliance section of the dashboard provides
the percentages of checks that pass and a count of check warnings and errors. You can interactively
investigate these fixes by toggling between the dashboard and your model.

Explore Compliance Results in the Dashboard
1 In the Metrics Dashboard, locate the Modeling Guideline Compliance section. This section

displays the percentage of high-integrity and MAB compliance checks that pass on all systems.
The bar charts show the number of issues reported by the checks in each check group.

2 To see a table that details the number of compliance issues by component, click on the High
Integrity bar chart. For more information on this metric, see “Model Advisor Check Issues for
High-Integrity Systems”.

3 From the table, click the Throttle component hyperlink. The Throttle component opens in
the model editor. The model editor highlights blocks in the component that have compliance
issues. The Model Advisor Highlighting dialog box lists checks that do not highlight results.

4 In the Metrics Dashboard, return to the main dashboard page by clicking the Dashboard icon.

1 Get Started

1-12

5 Click the High Integrity percentage gauge.

The Grid view enables you to identify patterns in results. The grid contains a row for each model
component and a column for each check. To see check and component names, hover over a table
element.

6 To see the status for each compliance check, click the Table view.
7 Expand the sldemo_fuelsys node.
8 To explore check results in more detail, click the Check safety-related diagnostic settings for

model referencing hyperlink.
9 In the Model Advisor Highlighting dialog box, click Check safety-related diagnostic settings

for model referencing hyperlink.

A Model Advisor report opens. The report lists current model configuration settings and their
recommended values.

Update Model to Fix Compliance Issues
1 To change the current value of a parameter to the recommended value, click a parameter. The

Configuration Parameters dialog box opens.
2 Change the parameter setting to what the Recommended Value column in the report indicates.
3 Click Apply and close the dialog box.
4 Close the Model Advisor report.
5 In the Model Advisor Highlighting dialog box, click the Check safety-related diagnostic

settings for compatibility check.

The Model Advisor report opens.
6 For this check, repeat steps 1 through 4.
7 In the Model Advisor Highlighting dialog box, click the Check safety-related diagnostic

settings for bus connectivity check.
8 For this check, repeat steps 1 through 4.
9 Close the Model Advisor Highlighting dialog box and return to the Metrics Dashboard table

Rerun Model Metrics
1 In the Metrics Dashboard table, return to the main dashboard page, by clicking Dashboard.
2 To rerun the model metrics, click All Metrics.
3 Confirm that the number of High Integrity check issues has reduced.

 Detect and Fix Compliance Issues

1-13

Next, use the Actual Reuse and Potential Reuse widgets to investigate and replace clones across a
model hierarchy.

1 Get Started

1-14

Refactor Models to Improve Component Reuse
You can use the Metrics Dashboard to identify clones across a model hierarchy. Clones are identical
MATLAB Function blocks, identical Stateflow charts, and subsystems that have identical block types
and connections. Clones can have different parameter settings and values. To replace clones with
links to library blocks, you can open the Clone Detector app from the Metrics Dashboard.

Use the Clone Detector app to refactor a model, improve model componentization and readability,
and reuse components within a model. In this example, you launch the Clone Detector from the
Metrics Dashboard. However, you can also open it by opening the Apps tab and clicking Clone
Detector.

Identify and Replace Clones with Links to Library Blocks
1 In the Architecture section, the blue bar in the Actual Reuse widget indicates the fraction of

total number of subcomponents that are linked library blocks. Pause over the Actual Reuse
widget to see more information. For this model, 10% of the total number of subcomponents are
linked library blocks.

2 To see more details, click the blue bar. System Lag, Throttle Command, and CheckRange are
linked library blocks.

 Refactor Models to Improve Component Reuse

1-15

3 Return to the main dashboard page.
4 In the Architecture section, the Potential Reuse bar indicates that the model contains clones.

Pause over Potential Reuse. For this model, 7% of the subcomponents are clones.
5 To see more details, click the yellow bar. Pressure.map_estimate and

Throttle.throttle_estimate are clones of each other.
6 To determine whether these clones are candidates for replacement with linked library blocks,

click Open Conversion Tool.

The Clone Detector app opens as a new tab in the model.
7 In the Clone Detection Results and Actions pane, click the Clone Results tab.

There is one clone group. The light blue shading indicates that these clones are similar clones
and not exact clones. Similar clones have different parameter settings and values.

8 Expand the clone group.

This clone group consists of two subcharts.

1 Get Started

1-16

9 To determine parameter differences, in the Block Difference column, click View parameter
difference.

The subcharts in this clone group call Simulink functions that differ only by the value of the
breakpoints parameters in the Lookup Table blocks inside of them.

10 In the Clone Results tab, for the Library to place clones parameter, use the Browse button to
choose a library or specify a new library name. If you specify a new library name, the app creates
the library.

11 Save the model to your working folder and, in the Clone Detector tab, click Replace Clones.
The app replaces similar clones with links to masked library subsystems, if possible.

In the Logs tab, click the latest log.

The log contains a message indicating that the clones cannot be replaced with linked library
blocks because the data in the Simulink Functions can not be promoted to subchart data.

12 Close the Metrics Dashboard and the model.

When the Clone Detector app refactors a model to replace clones with links to library blocks, the app
creates a backup folder. The backup folder name has the prefix m2m_<model name>. If you have a
Simulink Test™ license, you can verify the equivalency of the refactored and original models by
clicking Check Equivalency in the Clone Detector tab.

Explore Other Options
This table contains a list of common tasks that you can address with Simulink Check.

Task Reference
Simplify and debug complex models. “Highlight Functional Dependencies” on page 8-

2
Run Model Advisor checks for compliance with
safety standards associated with High-Integrity
System Modeling and MAB Control Algorithm
Modeling guidelines.

“Check Model Compliance by Using the Model
Advisor” on page 3-2

Write custom Model Advisor checks. “Define Custom Model Advisor Checks” on page
6-45

Create and deploy a custom Model Advisor
configuration.

“Create and Deploy a Model Advisor Custom
Configuration” on page 7-23 and “Use the Model
Advisor Configuration Editor to Customize the
Model Advisor” on page 7-3

 Refactor Models to Improve Component Reuse

1-17

Task Reference
Learn more about how to use the Metrics
Dashboard to collect and view metric data for
quality assessment.

“Collect and Explore Metric Data by Using the
Metrics Dashboard” on page 5-2

Configure compliance metrics, add metric
thresholds, and customize the Metrics Dashboard
layout.

“Customize Metrics Dashboard Layout and
Functionality” on page 5-36

Use the Model Transformer tool and the Clone
Detector app to refactor a model to improve
model componentization and readability and
enable reuse.

“Transform Model to Variant System” on page 3-
23 and “Enable Component Reuse by Using
Clone Detection” on page 3-33

Learn more about how to use Simulink products
to test models and code, check for design errors,
check against standards, measure coverage, and
validate the system.

“Verification and Validation”

1 Get Started

1-18

Simplify Model for Targeted Analysis of Complex Models Using
Model Slicer Tool

You can simplify simulation, debugging, and formal analysis of large, complex models by focusing on
areas of interest in your model. After highlighting a portion of your model using the Model Slicer, you
can generate a simplified standalone model. The simplified model contains the blocks and
dependency paths in the highlighted portion. Apply changes to the simplified standalone model based
on simulation, debugging, and formal analysis, and then apply these changes back to the original
model.

1 The example model sldemo_mdlref_basic contains three instances of the model
sldemo_mdlref_counter. To open the model, at the MATLAB® command prompt, enter:

openExample('sldemo_mdlref_basic');
2 To open the Model Slicer Manager, on the Model Verification, Validation, and Test section of the

Apps tab, click Model Slicer.
3 In the Model Slice Manager, click the arrow to expand the Slicer configuration list.
4 Set the slice properties:

• Name: Slice1
• Color: (magenta)
• Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from a block in
your model, depending on which direction you want to trace the signal propagation.

5 Add CounterC as a starting point. In the model, right-click CounterC and select Model Slicer
> Add as Starting Point.

 Simplify Model for Targeted Analysis of Complex Models Using Model Slicer Tool

1-19

The Model Slicer now highlights the upstream constructs that affect CounterC.

1 Get Started

1-20

6 In the Model Slice Manager, click Generate slice.
7 In the Select File to Write dialog box, select the save location and enter a model name. The

simplified standalone model contains the highlighted model items.

8 To remove highlighting from the model, close the Model Slice Manager.

You can now analyze the simplified standalone model and apply any changes to the source model.

See Also

More About
• “Model Slicer Considerations and Limitations” on page 8-43
• “Highlight Functional Dependencies” on page 8-2
• “Refine Highlighted Model” on page 8-12

 Simplify Model for Targeted Analysis of Complex Models Using Model Slicer Tool

1-21

Assess Requirements-Based Testing Quality by Using the
Model Testing Dashboard

You can assess the status of your model testing activities by using the metrics in the Model Testing
Dashboard. When you test your models against requirements, you maintain traceability between the
requirements, models, test cases, and results. The dashboard helps you to track the status of these
artifacts and the traceability relationships between them. Each metric in the dashboard measures a
different aspect of the quality of the testing artifacts and reflects guidelines in industry-recognized
software development standards, such as ISO 26262 and DO-178C. For more information, see “Assess
the Completeness of Requirements-Based Testing in Accordance with ISO 26262” on page 5-76.

From the dashboard, you can identify and fix testing issues. Update the dashboard metrics to track
your progress toward testing compliance.

Open the Project and Model Testing Dashboard
The Model Testing Dashboard shows data on the traceability and testing status of each unit in your
project. A unit is a functional entity in your software architecture that you can execute and test
independently or as part of larger system tests. You can label models as units in the Model Testing
Dashboard. If you do not specify the models that are considered units, then the dashboard considers
a model to be a unit if it does not reference other models. The dashboard considers each model in
your project to represent a unit because you use models to design and test the algorithms.

1 Open the project that contains the models and testing artifacts. For this example, at the MATLAB
command line, enter dashboardCCProjectStart('incomplete'):

dashboardCCProjectStart('incomplete')
2 Open the Model Testing Dashboard by using one of these approaches:

• On the Project tab, click Model Testing Dashboard.
• At the MATLAB command line, enter modelTestingDashboard.

3 The first time that you open the dashboard for the project, the dashboard must identify the
artifacts in the project and collect traceability information.

1 Get Started

1-22

The dashboard performs an initial traceability analysis and collects metric results for the metrics
available in your installation. Collecting results for all MathWorks® metrics requires licenses for
Simulink Check, Requirements Toolbox™, and Simulink Test. If metric results have been
collected, viewing the results requires only a Simulink Check license.

The dashboard analyzes the traceability links from the artifacts to the models in the project and
populates the widgets with metric results for the unit that is selected in the Artifacts panel.

Assess Traceability of Artifacts
When the dashboard collects and reports metric data, it scopes the results to the artifacts in one unit
in the project. Use the Artifacts panel to view each unit in the project, represented by the name of its
model, and the artifacts that trace to it.

1 In the Artifacts panel, click the unit db_DriverSwRequest. The dashboard widgets populate
with metric data from the artifacts in this unit.

2 In the Artifacts panel, expand the section for the unit. Click the arrow to the left of
db_DriverSwRequest. The section below the unit shows the artifacts of each type that trace to
the unit.

 Assess Requirements-Based Testing Quality by Using the Model Testing Dashboard

1-23

3 Expand the Functional Requirements section and then expand the Implemented and
Upstream sections. This unit implements the requirements in the file
db_SoftwareReqs.slreqx and links to the upstream, system-level requirements in
db_SystemReqs.slreqx. Click the arrow to the left of a file name to see the individual
requirements that trace to the model.

You can explore the units and sections in the Artifacts panel to see which requirements, test cases,
and test results trace to each unit in the project. For more information on how the dashboard
analyzes this traceability, see “Trace Artifacts to Units for Model Testing Analysis” on page 5-70.

Explore Metric Results for a Unit
1 On the Artifacts panel, click the unit db_DriverSwRequest to view the Model Testing results.

The dashboard widgets populate with the metric results for the unit.
2 In the Test Case Analysis section of the dashboard, locate the Tests with Requirements

widget. To view tooltips with details about the results, point to the sections of the gauge or to the
percentage result.

3 To explore the metric data in more detail, click an individual metric widget. For example, click
the Tests with Requirements widget to view the Metric Details for the metric.

The table shows each test case for the unit, the test file containing each test case, and whether
the test case is linked to requirements.

4 The table shows that the test case Detect long decrement is missing linked requirements.
You can use the Model Testing Dashboard to open the test case in the Test Manager. In the
Artifact column, click Detect long decrement.

5 At the top of the Model Testing Dashboard, there is a breadcrumb trail from the Metric Details
back to the Model Testing results.

1 Get Started

1-24

Click the breadcrumb button for db_DriverSwRequest to return to the Model Testing results
for the unit.

You can click on any of the widgets in the dashboard to view the details of their metric results. Use
the hyperlinks in the tables to open the artifacts and address testing gaps. For more information on
using the data in the dashboard, see “Explore Status and Quality of Testing Activities Using the
Model Testing Dashboard” on page 5-51.

Track Testing Status of a Project Using the Model Testing Dashboard
To use the Model Testing Dashboard to track your testing activities, set up and maintain your project
using the best practices described in “Manage Requirements-Based Testing Artifacts for Analysis in
the Model Testing Dashboard” on page 5-68. As you develop and test your models, use the
dashboard to identify testing gaps, fix the underlying artifacts, and track your progress towards
model testing completion. For more information on finding and addressing gaps in your model
testing, see “Fix Requirements-Based Testing Issues” on page 5-61.

See Also
“Model Testing Metrics”

 Assess Requirements-Based Testing Quality by Using the Model Testing Dashboard

1-25

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 2-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 2-7
• “Perform Functional Testing and Analyze Test Coverage” on page 2-9
• “Analyze Code and Test Software-in-the-Loop” on page 2-12

2

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data, documents, models,

and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.

2 Verification and Validation

2-2

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

2-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

2 Verification and Validation

2-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

2-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Requirements Toolbox)
• “Customize Requirements Traceability Report for Model” (Requirements Toolbox)

External Websites
• Requirements-Based Testing Workflow

2 Verification and Validation

2-6

https://youtu.be/0STxZbqOUXg

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks
Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

 Analyze a Model for Standards Compliance and Design Errors

2-7

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.
c To review the configuration parameter settings that violate MAB style guidelines, run the

Check model diagnostic parameters check.
d The analysis results appear in the right pane on the Report tab. Report displays the violation

details and the recommended action.
e Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and

update the model diagnostic parameters. Save the model.
f To verify that your model passes, rerun the check. Repeat steps from c to e, if necessary, to

reach compliance.
g To generate a results report of the Simulink Check checks, select the MAB Checks node,

and then, from the toolstrip, clickReport.

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 From the tool strip, click Run Check.
4 After the Model Advisor analysis, from the tool strip, click Report. This generates a HTML report

of the check analysis.
5 In the generated report, click a Simulink Design Verifier Results Summaryhyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click the Compute target speed subsystem.
The Simulink Design Verifier Results Inspector window provides derived ranges that can
help you understand the source of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” on page 3-2
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

2 Verification and Validation

2-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager. At the command line, enter:

 Perform Functional Testing and Analyze Test Coverage

2-9

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.

The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes select the Results in the Test Manager. The aggregated coverage results

show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

2 Verification and Validation

2-10

Alternatively, you can create and use tests to increase coverage programmatically by using
sltest.testmanager.addTestsForMissingCoverage and
sltest.testmanager.TestOptions.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output to Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

2-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
You can analyze code to detect errors, check standards compliance, and evaluate key metrics such as
length and cyclomatic complexity. For handwritten code, you typically check for run-time errors with
static code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, you refine the code and add tests.

In this example, you generate code and demonstrate that the code execution produces equivalent
results to the model by using the same test cases and baseline results. Then you compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to regenerate
code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics and defects. To produce more MISRA compliant
code from your model, you use the code generation and Model Advisor. To check whether the code is
MISRA compliant, you use the Polyspace MISRA C:2012 checker and report generation capabilities.
For this example, you use the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

2 Verification and Validation

2-12

Run Code Generator Checks

Before you generate code from your model, use the Code Generation Advisor to check your model so
that it generates code more compliant with MISRA C and more compatible with Polyspace.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized. The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

The Code Generation Advisor checks whether the model includes blocks or configuration settings
that are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this

 Analyze Code and Test Software-in-the-Loop

2-13

model, the check for incompatible blocks passes, but some configuration settings are
incompatible with MISRA compliance and Polyspace checking.

4 Click the check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, use the Model Advisor to check your model for MISRA C
and Polyspace compliance. This example shows you how to use the Model Advisor to check your
model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, in the Simulink Editor, right-click Compute target speed and select

Polyspace > Options.
4 Click Configure to choose more advanced Polyspace analysis options in the Polyspace

configuration window.

2 Verification and Validation

2-14

5 On the left pane, click Coding Standards & Code Metrics, then select Calculate Code
Metrics to enable code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks. You can see the
progress of the analysis in the MATLAB Command Window. After the analysis finishes, the
Polyspace environment opens.

Review Results

The Polyspace environment shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify
every result. Because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

 Analyze Code and Test Software-in-the-Loop

2-15

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration to choose a subset of MISRA rules

in the Polyspace configuration.
4 Click Configure.
5 In the Polyspace window, on the left pane, click Coding Standards & Code Metrics. Then

select Check MISRA C:2012 and, from the drop-down list, select single-unit-rules. Now
Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, Polyspace found only two
violations.

2 Verification and Validation

2-16

When you integrate this model with its parent model, you can add the rest of the MISRA C:2012
rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. If you want to generate a report every time you run an analysis, see Generate
report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Test Code Against Model Using Software-in-the-Loop Testing
You previously showed that the model functionality meets its requirements by running test cases
based on those requirements. Now run the same test cases on the generated code to show that the
code produces equivalent results and fulfills the requirements. Then compare the code coverage to
the model coverage to see the extent to which the tests exercised the generated code.

1 In MATLAB, in the project window, open the tests folder, then open SILTests.mldatx. The
file opens in the Test Manager.

 Analyze Code and Test Software-in-the-Loop

2-17

2 Review the test case. On the Test Browser pane, navigate to SIL Equivalence Test Case.
This equivalence test case runs two simulations for the
simulinkCruiseErrorAndStandardsExample model using a test harness.

• Simulation 1 is a model simulation in normal mode.
• Simulation 2 is a software-in-the-loop (SIL) simulation. For the SIL simulation, the test case

runs the code generated from the model instead of running the model.

The equivalence test logs one output signal and compares the results from the simulations. The
test case also collects coverage measurements for both simulations.

3 Run the equivalence test. Select the test case and click Run.
4 Review the results in the Test Manager. In the Results and Artifacts pane, select SIL

Equivalence Test Case to see the test results. The test case passed and the results show that
the code produced the same results as the model for this test case.

5 Expand the Coverage Results section of the results. The coverage measurements show the
extent to which the test case exercised the model and the code. When you run multiple test
cases, you can view aggregated coverage measurements in the results for the whole run. Use the
coverage results to add tests and meet coverage requirements, as shown in “Perform Functional
Testing and Analyze Test Coverage” on page 2-9.

You can also test the generated code on your target hardware by running a processor-in-the-loop
(PIL) simulation. By adding a PIL simulation to your test cases, you can compare the test results and
coverage results from your model to the results from the generated code as it runs on the target
hardware. For more information, see “Code Verification Through Software-in-the-Loop and Processor-
in-the-Loop Execution” (Embedded Coder).

2 Verification and Validation

2-18

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

2-19

Checking Systems Interactively

3

Check Model Compliance by Using the Model Advisor

Model Advisor Overview
The Model Advisor checks your model or subsystem for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation of the system that the model represents. The
Model Advisor checks can help you verify compliance with industry standards and guidelines. By
using the Model Advisor, you can implement consistent modeling guidelines across projects and
development teams.

Upon completing the analysis of your model, the Model Advisor produces a report that lists the
suboptimal conditions, settings, and modeling techniques and proposes solutions, when applicable.

You can use the Model Advisor to check your model in these ways:

• Interactively run Model Advisor checks
• Configure the Model Advisor to automatically run edit-time checks (requires Simulink Check)

These limitations apply when you use the Model Advisor to check your model. For limitations that
apply to specific checks, see the Capabilities and Limitations section in the check documentation.

• If you rename a system, you must restart the Model Advisor to check that system.
• In systems that contain a variant subsystem, the Model Advisor checks the active subsystem. To

check both the active and inactive subsystems, set the Advisor.Application property,
AnalyzeVariants, to true.

• Model Advisor does not analyze commented blocks.
• Checks do not search in model blocks or subsystem blocks with the block parameter Read/Write

set to NoReadorWrite. However, on a check-by-check basis, Model Advisor checks do search in
library blocks and masked subsystems.

• Unless specified otherwise in the documentation for a check, the Model Advisor does not analyze
the contents of a Model block. To run checks on referenced models, use instances of the
Advisor.Application class (Simulink Check license required).

Note Software is inherently complex and may not be free of errors. Model Advisor checks might
contain bugs. MathWorks reports known bugs brought to its attention on its Bug Report system at
https://www.mathworks.com/support/bugreports/. The bug reports are an integral part of the
documentation for each release. Examine bug reports for a release as such reports may identify
inconsistencies between the actual behavior of a release you are using and the behavior described in
this documentation.

While applying Model Advisor checks to your model increases the likelihood that your model does not
violate certain modeling standards or guidelines, their application cannot guarantee that the system
being developed will be safe or error-free. It is ultimately your responsibility to verify, using multiple
methods, that the system being developed provides its intended functionality and does not include
unintended functionality.

3 Checking Systems Interactively

3-2

https://www.mathworks.com/support/bugreports/

Model Advisor Checks Documentation

The Model Advisor only displays the checks for your installed products. This table provides links to
the product-specific check documentation. A product license may be required to review some of the
documentation.

Product Model Advisor Check Documentation
Simulink “Simulink Checks”
Embedded Coder “Embedded Coder Checks” (Embedded Coder)
AUTOSAR Blockset “AUTOSAR Blockset Checks” (AUTOSAR

Blockset)
Simulink Coder™ “Simulink Coder Checks” (Simulink Coder)
HDL Coder™ “HDL Code Advisor Checks” (HDL Coder)
Simulink Code Inspector™ “Simulink Code Inspector Checks” (Simulink

Code Inspector)
Simulink Check “DO-178C/DO-331 Checks”

“IEC 61508, IEC 62304, ISO 26262, ISO 25119,
and EN 50128/EN 50657 Checks”

“Model Checks for DO-254 Standard Compliance”
on page 3-56

“High Integrity System Modeling Checks”

“Model Advisor Checks for MAB and JMAAB
Compliance”

“MISRA C:2012 Checks”

“Secure Coding Checks for CERT C, CWE, and
ISO/IEC TS 17961 Standards”

“Model Metrics”
Simulink Design Verifier “Simulink Design Verifier Checks” (Simulink

Design Verifier)
Simulink PLC Coder™ “PLC Model Advisor Checks” (Simulink PLC

Coder)
Requirements Toolbox “Requirements Consistency Checks”

(Requirements Toolbox)
Simscape™ Documentation is available only in the Model

Advisor. To review the documentation for the
check, in the Model Advisor, right-click on the
check title and select What's This?

Simulink Control Design™ “Simulink Control Design Checks” (Simulink
Control Design)

IEC Certification Kit “IEC Certification Kit Checks” (IEC Certification
Kit)

 Check Model Compliance by Using the Model Advisor

3-3

Product Model Advisor Check Documentation
DO Qualification Kit “DO Qualification Kit Checks” (DO Qualification

Kit)

Run Model Advisor Checks and Review Results
You can use the Model Advisor to check your model interactively against modeling standards and
guidelines. The following example uses the sldemo_mdladv model to demonstrate the execution of
the Model Advisor checks using the Model Advisor.

1 Open the Model Advisor example model sldemo_mdladv.
2 To open the Model Advisor, in the Simulink editor, click the Modeling tab and select Model

Advisor. A System Selector ― Model Advisor dialog box opens. Select the model or system
that you want to review and click OK.

3 In the left pane of the Model Advisor, select the checks you want to run on your model:

a You can select the checks by using the By Product or By Task folders.

• Show By Product Folder ― Displays checks available for each product
• Show By Task Folder ― Displays checks related to specific tasks

Checks with the icon trigger an update of the model diagram.

Checks with the icon trigger an extensive analysis of the model. Checks that trigger extensive
analysis of the model use additional analysis techniques, such as analysis with Simulink Design
Verifier.

4 Click on the folder that contains the checks and, on the toolstrip, select Run Checks to execute
the analysis. To run a single check, right-click the check in the folder and select Run This
Check.

5 View the results on the Model Advisor User Interface. This table shows the common check status
results; notice that different icons are used depending on the parameter set for Check result
when issues are flagged in the Model Advisor Configuration Editor (requires a Simulink Check
license). For more information about this parameter, see “Specify Parameters for Check
Customization” on page 7-6.

Check Result Status Icon Description
Passed Model does not have any violations for the

given check(s).
Failed Check has identified severe violations.

Warning Check has identified violations.

Justified Check violations are justified.

Not Run Check not selected for Model Advisor
analysis.

Incomplete Check analysis is incomplete or check
execution has resulted in exceptions.

6 Fix the warnings or failures as desired. For more information, see “Address Model Check
Results”.

3 Checking Systems Interactively

3-4

matlab:sldemo_mdladv

7 Use the Exclusions tab to review checks that were marked for exclusion from the analysis.
8 View and save the report. For additional information, see “Save and View Model Advisor Check

Reports” and “Generate Model Advisor Reports” on page 3-20.

See Also

Related Examples
• “Address Model Check Results”
• “Generate Model Advisor Reports” on page 3-20
• “Save and View Model Advisor Check Reports”
• “Find Model Advisor Check IDs”
• “Archive and View Results” on page 4-6
• “Exclude Blocks from the Model Advisor Check Analysis” on page 3-9
• “Check Model Compliance Using Edit-Time Checking” on page 3-6
• “Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

 Check Model Compliance by Using the Model Advisor

3-5

Check Model Compliance Using Edit-Time Checking
When you enable edit-time checks, the Model Advisor evaluates the model against a subset of Model
Advisor checks. Highlighted blocks in the model editor window alert you to issues in your model. This
enables you to identify modeling issues earlier in the model design process.

Configure Your Model to Use Edit-Time Checking
You can use one of these methods to enable edit-time checking of your model:

• In the Debug tab, select Diagnostics > Edit-Time Errors and Warnings.
• In the Modeling tab, select Model Advisor > Edit-Time Checks. The Configuration Parameters

dialog box opens and you select the check box for Edit-Time Checks.
• Enable edit-time checking through the command line using the

edittime.setAdvisorChecking function.
• If you have an Embedded Coder or Simulink Coder license, you can use edit-time checks to

evaluate your model for issues that are specific to code generation. To enable these checks, open
the Embedded Coder app and select the C/C++ Code Advisor > Edit-Time Checks. The
Configuration Parameters dialog box opens and you select the check box for Edit-Time Checks.

When edit-time checking is enabled, the Model Advisor highlights blocks in your model that violate
Model Advisor checks.

To review a check violation, click the error or warning icon above the highlighted block. A diagnostics
window opens, which provides information about the modeling issue that violates the Model Advisor
check. When a block violates multiple checks, you can use the diagnostics window to review issues.

For each modeling issue, you can use the diagnostics window to:

• Review the cause and explore suggested options for fixing the issue, if any.

3 Checking Systems Interactively

3-6

• Click the question mark to access detailed documentation about the violated Model Advisor check.
• Ignore the warning and add the block to the exclusion list for that check by clicking Suppress.

In this example, you use edit-time checking to verify the compliance of a model with MAB guidelines
while you edit.

1 Open a model. For this example, at the command prompt, type: sldemo_fuelsys.
2 To enable the edit-time checking, in the Modeling tab, select Model Advisor > Edit-Time

Checks. The Configuration Parameters dialog box opens and you select the check box for Edit-
Time Checks.

3 The Model Advisor highlights several blocks. Place your cursor over the warning of the Throttle
Angle Fault Switch block to discover the issue.

4 Select the warning. The Model Advisor indicates that the block name has an incorrect character.
Replace the space with an underscore character and the warning goes away.

 Check Model Compliance Using Edit-Time Checking

3-7

View and Customize the Edit-Time Checks in a Model Advisor
Configuration
The Model Advisor checks that are available for edit-time checking are specified by using a Model
Advisor configuration file. You use the Model Advisor Configuration Editor to review and modify
existing configuration files and create new configuration files.

To open a Model Advisor configuration file and review the Model Advisor checks that are enabled for
use in edit-time checking:

1 In the Simulink editor, click the Modeling tab and select Model Advisor > Configuration
Editor.

2 The Model Advisor Configuration Editor opens. The file name for the configuration that is
currently being used by the Model Advisor is displayed at the top of the window. Verify that you
are evaluating the correct configuration file. To open a different configuration file, click Open
and browse to the file you would like to review.

3 In the Model Advisor Configuration Editor, on the Model Advisor tab, select the Edit time
supported checks option. The filtered list identifies the Model Advisor checks that are
supported for edit-time checking.

Note When a check is included in multiple folders of your Model Advisor hierarchy, for edit-time
checking, the Model Advisor prioritizes the check in your custom folder. If the check is not in
your custom folder, priority goes to the check in the By Task folder, and finally to the check in
your By Product folder.

4 In the Model Advisor tab, check the box beside the checks that you want to include in the edit-
time check analysis. Deselect the boxes beside checks that you do not want analyzed. For
additional information about using the Model Advisor Configuration Editor to create a custom
Model Advisor configuration, including the customization of edit-time checks, see “Use the Model
Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

See Also

Related Examples
• “Address Model Check Results”
• “Generate Model Advisor Reports” on page 3-20
• “Save and View Model Advisor Check Reports”
• “Find Model Advisor Check IDs”
• “Archive and View Results” on page 4-6
• “Exclude Blocks from the Model Advisor Check Analysis” on page 3-9

3 Checking Systems Interactively

3-8

Exclude Blocks from the Model Advisor Check Analysis

Model Advisor Exclusion Overview
To save time during model development and verification, you can limit the scope of the Model Advisor
analysis of your model. You can create a Model Advisor exclusion to exclude blocks in the model from
selected checks. You can exclude all or selected checks from:

• Simulink blocks
• Stateflow charts

After you specify the blocks to exclude, Model Advisor uses the exclusion information to exclude
blocks from specified checks during analysis. By default, Model Advisor exclusion information is
stored in the model SLX file. Alternatively, you can store the information in an exclusion file.

To view exclusion information for the model, right-click in the model window or right-click a block
and select Model Advisor > Open Model Advisor Exclusion Editor.

The Model Advisor Exclusion Editor dialog box includes the following information for each exclusion:

• Filter Identifier
• Filter Type
• Summary
• Check ID(s)

 Exclude Blocks from the Model Advisor Check Analysis

3-9

Field Description
Filter Identifier Name and path of the block or subsystem that is excluded. The

path of the blocks are hyper-linked and clicking on them will
highlight the concerned blocks on the model canvas.

Filter Type Defines the type of the excluded item.

Example: If the filter type is Block, on that particular Simulink
block is excluded. If the type is Subsystem, then all the contents
inside that subsystem are excluded.

Summary Editable field to enter notes or the reason for exclusion. By default,
this field defines whether a specific block is excluded or all blocks
of a given type are excluded.

Check ID (s) Names of the checks for which the block exclusion applies. Check
Selector can be invoked from this cell by clicking on the edit ()
button.

Note If you comment out blocks, they are excluded from both simulation and Model Advisor analysis.

Filter Types

Filter type defines the type of the excluded entity. Model Advisor Exclusion Editor currently supports
exclusion of the following entities:

Filter Type Description
Simulink
Block Exclude a Simulink block.
BlockType Exclude all blocks of a type.
Subsystem Exclude all blocks inside a Subsystem.
Library Exclude all instances of a Library block.
MaskType Exclude blocks or subsystem of mask type.
Stateflow Exclude Stateflow blocks in Simulink.
Stateflow
Chart Exclude every entity inside a Stateflow Chart.
State Exclude a Stateflow State.
Transition Exclude a Stateflow Transition.
Junction Exclude a Stateflow Junction.
GraphicalFunction Exclude a Stateflow Graphical Function.
MATLABFunction Exclude a Stateflow MATLAB Function.
SimulinkFunction Exclude a Stateflow Simulink Function.
TruthTable Exclude a Stateflow Truth Table.
SimulinkBasedState Exclude a Stateflow Simulink based state.

3 Checking Systems Interactively

3-10

Create Model Advisor Exclusions
1 In the model window, right-click a block and select Model Advisor. Select the menu option for

the type of exclusion that you want to do.

Task Select Model Advisor >
Exclude the block from all
checks.

Exclude block only > All Checks

Exclude all blocks of this type
from all checks.

Exclude all blocks of type <block_type> > All Checks

Exclude the block from
selected checks.

a Exclude block only > Select Checks.
b In the Check Selector dialog box, select the checks. Click

OK.
Exclude all blocks of this type
from selected checks.

a Exclude all blocks of type <block_type> > Select
Checks.

b In the Check Selector dialog box, select the checks. Click
OK.

Exclude the block from all
failed checks. This option is
available only after a Model
Advisor analysis.

Exclude block only > Only failed checks

Exclude all blocks of this type
from all failed checks. This
option is available only after
a Model Advisor analysis.

Exclude all blocks of type <block_type> > Only failed
checks

Exclude the block from a
failed check. This option is
available only after a Model
Advisor analysis.

Exclude block only > <name of failed check>

Exclude all blocks of this type
from a failed check. This
option is available only after
a Model Advisor analysis.

Exclude all blocks of type <block_type> > <name of
failed check>

2 In the Model Advisor Exclusion Editor dialog box, save the exclusions to the model or an
exclusion file by using one of the processes below.

You can create as many Model Advisor exclusions as you want by right-clicking model blocks and
selecting the options under Model Advisor.

Save Model Advisor Exclusions in a Model File
To save Model Advisor exclusions to the model .slx file, in the Model Advisor Exclusion Editor dialog

box, click on the save icon(). When you open the model .slx file, the model contains the
exclusions.

 Exclude Blocks from the Model Advisor Check Analysis

3-11

Save Model Advisor Exclusions in Exclusion File
A Model Advisor exclusion file specifies the collection of blocks to exclude from specified checks in an
exclusion file. You can create exclusions and save them in an exclusion file.

To save Model Advisor exclusions to the exclusion .xml file:

1 Open the Model Advisor Exclusion Editor.
2

click the drop-down next to the save icon().
3 Select Save as and enter the desired name for the exclusion file in the File name field.
4 Click Save.

Unless you specify a different folder, the Model Advisor saves exclusion files in the current folder.

If you create an exclusion file and save your model, you attach the exclusion file to your model. Each
time that you open the model, the blocks and checks specified in the exclusion file are excluded from
the analysis.

Check Selector
The Check Selector window allows you to select the checks to exclude for a specific block or all
blocks of a specified type. Open the Check Selector by right-clicking a block and selecting either:

• Model Advisor > Exclude block only > Select checks
• Model Advisor > Exclude all blocks of type <block_type> > Select checks

In the Check Selector, you can use the search functionality to search for a check that needs to be
excluded. Check Selector can be also invoked from the Model Advisor Exclusion Editor window by
clicking on the edit () button in the Check Id(s) column.

3 Checking Systems Interactively

3-12

Review Model Advisor Exclusions
You can review the exclusions associated with your model. Before or after a Model Advisor analysis,
to view exclusions information:

• Right-click in the model window or right-click a block and select Model Advisor > Open Model
Advisor Exclusion Editor. The Model Advisor Exclusion Editor dialog box lists the exclusions for
your model.

• After the Model Advisor analysis, you can view exclusion information for individual checks in the
report file.

• After you run the checks, in the left pane of the Model Advisor window, the checks that contain
exclusion rules are highlighted in orange. The Model Advisor results include additional
information about the exclusion.

If the check The HTML report and Model Advisor window
Has no exclusions rules
applied.

Show that no exclusions were applied to this check.

Does not support
exclusions.

Shows that the check does not support exclusions.

Is excluded from a block. Lists the check exclusion rules.

 Exclude Blocks from the Model Advisor Check Analysis

3-13

Manage Exclusions
Load an Exclusion File

To load an existing exclusion file for use with your model:

1 In the Model Advisor Exclusion Editor dialog box, click Load icon.
2 Navigate to the exclusion file that you want to use with your model. Select Open.
3 In the Model Advisor Exclusion Editor dialog box, click OK to associate the exclusion file with

your model.

Remove an Exclusion

1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that you want to remove.
2

Click the Delete Exclusion Row button ().

Add Summary to an Exclusion

You can add text that describes why you excluded a particular block or blocks from selected checks
during Model Advisor analysis. A description is useful to others who review your model.

1 In the Model Advisor Exclusion Editor dialog box, double-click the Summary field for the
exclusion.

2 Delete the existing text.
3 Add the summary for excluding this object.

Compatibility Considerations after R2020b
In R2020b, the format in which exclusions are stored changed. In releases after R2020b, Model
Advisor can read format used in previous releases, and convert it to new format. Conversion happens
only once. The model is updated with the new file path, which Exclusion editor subsequently uses.

When you open a exclusion file created in R2020a or earlier, the files and models are updated based
on whether the exclusion file was saved in the model or as a separate file, following are the sequence
of actions that will be performed in each case:

Exclusion File Saved Inside the Model

1 The original exclusion file is read and written to a new file.
2 The new file is saved in the model SLX file when you save the model.

These changes are done automatically, and without notification that the file has been updated.

Exclusion File Is Saved in a Separate Exclusion File

1 The old file is read and, you can choose to overwrite the existing exclusion file or save the
exclusion file with a new name in the same location.

2 The model updates the new file path when you save the model.

The Exclusion Editor reports that a change has taken place.

3 Checking Systems Interactively

3-14

Programmatically Change Model Advisor Exclusions
The Model Advisor Exclusion Editor can now be used with the following functions:

Task Function
Add a new exclusion in Model Advisor. Advisor.addExclusion
Remove exclusions from Model Advisor. Advisor.removeExclusion
Clear all exclusions from Model Advisor. Advisor.clearExclusion
Get exclusions for a model or a filter. Advisor.getExclusion
Save exclusions to the default option or to a new
file.

Advisor.saveExclusion

Load default exclusions stored inside the model
or according to the path settings.

Advisor.loadExclusion

The Model Advisor Exclusion file path is tracked by a model parameter called MAModelFilterFile.
Use the set_param API to update this parameter.

set_param('<model name>','MAModelFilterFile', '<new_file_path>');

After the model is saved and reopened, the changes are reflected in the Exclusion Editor. If
<new_file_path> is an empty character vector, Model Advisor Exclusion Editor assumes the file is
stored inside the model SLX file.

See Also

Related Examples
• “Exclude Blocks From Custom Checks” on page 6-57
• “Run Model Advisor Checks and Review Results” on page 3-4
• “Address Model Check Results”
• “Generate Model Advisor Reports” on page 3-20
• “Save and View Model Advisor Check Reports”
• “Find Model Advisor Check IDs”
• “Archive and View Results” on page 4-6
• “Limit Model Checks by Excluding Gain and Outport Blocks”
• “Exclude Blocks from Edit Time Checking”

More About
• “Check Your Model Using the Model Advisor”

 Exclude Blocks from the Model Advisor Check Analysis

3-15

Justify Violated Blocks from the Model Advisor Check Analysis

Model Advisor Justification Overview
Justifications allows you to add a rationale for violations observed from the Model Advisor analysis to
exist. The justified violations are displayed in the report with a new status Justified.

You can add a Model Advisor Justification to any Simulink elements.

Create Model Advisor Justifications
You can justify a violation when you are building a Simulink diagram (Edit-time violations), or when
you complete the Model Advisor check analysis.

Justify violations post Model Advisor check analysis

To justify the Model Advisor violations displayed post check analysis, use these steps:

1 From the Check Selector section, select the violated check(s).
2 Click Justify icon from the toolstrip.
3 Enter the rationale for justification in the Justifications field on the Result Inspector tab.

3 Checking Systems Interactively

3-16

4 Click Add Justification.

Justify edit-time check violations

To justify the edit-time violations displayed during model creation, use these steps:

1 On the Simulink canvas, hover over a violated block.
2 Click on the warning icon displayed above the violated block.

Violation summary is displayed along with the title of the violated check.

3 Click Suppress. A description field to enter rationale is displayed.

 Justify Violated Blocks from the Model Advisor Check Analysis

3-17

4 Enter rationale for the justification.
5 Click Add Justification.

Manage Justifications
You can view and manage the justifications created when using edit time checking, and post Model
Advisor check analysis using the Model Advisor UI. You can perform save, edit, delete actions for the
justifications.

Note To view the Justifications created during edit-time in the Model Advisor UI, you need to run
Model Advisor checks from the user interface.

Save Justifications

Justifications are auto-saved in the directory where the model is located. The justification file is by
default named with syntax <modelname>_justifications.json.

Note The path in which a justifications.json is saved is displayed over a banner on the
simulink canvas when you a first justification is created.

Load Justifications

Justifications created and saved for a model are automatically loaded when the model is opened for
the next time. Justifications are saved in a json file in the directory where the model is located. The
justification file is by default named with syntax <modelname>_justifications.json.

Edit a Justification

To edit the rationale for the justifications:

1 From the check selector tab, select the justified check.
2 Open the Result Inspector tab.
3 Click Edit. Field to edit the existing rationale is enabled.
4 Edit the rationale.
5 Click Add Justification.

Delete a Justification

You can delete justifications and set the justified violations to the existing Error or Warning statuses
respectively.

To delete a justification:

1 From the check selector tab, select the justified check.
2 Open the Result Inspector tab.
3 Click Delete.

3 Checking Systems Interactively

3-18

See Also

Related Examples
• “Generate Model Advisor Reports” on page 3-20
• “Run Model Advisor Checks and Review Results” on page 3-4
• “Exclude Blocks From Custom Checks” on page 6-57
• “Address Model Check Results”
• “Save and View Model Advisor Check Reports”
• “Find Model Advisor Check IDs”
• “Archive and View Results” on page 4-6
• “Limit Model Checks by Excluding Gain and Outport Blocks”
• “Exclude Blocks from Edit Time Checking”

More About
• “Check Your Model Using the Model Advisor”

 Justify Violated Blocks from the Model Advisor Check Analysis

3-19

Generate Model Advisor Reports
By default, when the Model Advisor runs checks, it generates an HTML report of check results in the
slprj/modeladvisor/model_name folder. On Windows® platforms, you can generate Model
Advisor reports in HTML, Adobe® PDF, and Microsoft Word .docx formats.

The beginning of the Model Advisor reports contain the:

• Model name
• Simulink version
• System
• Treat as Referenced Model
• Model version
• Current run

Generate Results Report After Executing Model Advisor Checks
To generate a Model Advisor report in Adobe PDF or Microsoft Word:

1 In the left pane of the Model Advisor, select the checks you want to run. Click on the folder that
contains the checks and, from the toolstrip, click Run Checks.

2 When complete, from the toolstrip, click Report.
3 In the Save Report dialog box:

• Enter the path to the folder where you want to generate the report.
• Provide a file name.
• Click Save to generate a report in HTML format.

4 Use can change the File format to PDF, or WORD using the drop-down options of the Report
button.

5 The Model Advisor generates the report and saves it to the designated location.

Modify Template for Model Advisor Check Results Report
If you have a MATLAB Report Generator license, you can modify the default template that the Model
Advisor uses to generate the report in PDF or Microsoft Word.

The default template contains fields that the Model Advisor uses to populate the generated report
with information about the analysis. If you want your Model Advisor report to contain the analysis
information, do not delete the fields. When the Model Advisor generate the report, analysis
information overrides the text that you enter in the template field.

Template Field In generated report, displays
ModelName Model name
SimulinkVersion Simulink version
SystemName System name
TreatAsMdlRef Whether or not model is treated as a referenced model

3 Checking Systems Interactively

3-20

Template Field In generated report, displays
ModelVersion Model version
CurrentRun Model Advisor analysis time stamp
PassCount Number of checks that pass
JustifiedCount Number of checks that are justified
IncompleteCount Number of checks that fail to run to completion
FailCount Number of checks that fail
WarningCount Number of checks that cause a warning
NrunCount Number of checks that did not run
TotalCount Total number of checks
CheckResults Results for each check

This example shows how to add a header to a PDF version of a Model Advisor report.

1 Using Microsoft Word, open the default template matlabroot/toolbox/simulink/
simulink/modeladvisor/resources/templates/default.dotx.

2 Rename and save the template default.dotx to a writable location. For example, save template
default.dotx to C:/work/ma_format/mytemplate.dotx.

3 In the template C:/work/ma_format/mytemplate.dotx file, add a header. For example, in the
template header, add the text My Custom Header. Save the template as a Microsoft
Word .dotx file.

4 From the Model Advisor toolstrip, click Report drop-down, and select Template File.
5 In the Select Template for Report dialog box, enter the path to the folder where your custom

template is placed. in our case, the path is C:/work/ma_format/mytemplate.dotx.
6 Click OK.
7 From the toolstrip, click Report drop-down, and select PDF. The Model Advisor generates the

report in PDF format with the custom header.

 Generate Model Advisor Reports

3-21

See Also
ModelAdvisor.summaryReport | viewReport

Related Examples
• “Save and View Model Advisor Check Reports”
• “Customize Microsoft Word Component Templates” (MATLAB Report Generator)
• “Run Model Advisor Checks and Review Results” on page 3-4

3 Checking Systems Interactively

3-22

Transform Model to Variant System
You can use the Model Transformer tool to improve model componentization by replacing qualifying
modeling patterns with Variant Source and Variant Subsystem, Variant Model blocks. The Model
Transformer reports the qualifying modeling patterns. You choose which modeling patterns the tool
replaces with a Variant Source block or Variant Subsystem block.

The Model Transformer can perform these transformations:

• If an If block connects to one or more If Action Subsystems and each one has one outport, replace
this modeling pattern with a subsystem and a Variant Source block.

• If an If block connects to an If Action Subsystem that does not have an outport or has two or more
outports, replace this modeling pattern with a Variant Subsystem block.

• If a Switch Case block connects to one or more Switch Case Action Subsystems and each one has
one outport, replace this modeling pattern with a subsystem and a Variant Source block.

• If a Switch Case block connects to a Switch Case Action Subsystem that does not have an outport
or has two or more outports, replace this modeling pattern with a Variant Subsystem block.

• Replace a Switch block with a Variant Source block.
• Replace a Multiport Switch block that has two or more data ports with a Variant Source block.

For the Model Transformer tool to perform the transformation, the control input to Multiport Switch
or Switch blocks and the inputs to If or Switch Case blocks must be either of the following:

• A Constant block in which the Constant value parameter is a Simulink.Parameter object of
scalar type.

• Constant blocks in which the Constant value parameters are Simulink.Parameter objects of
scalar type and some other combination of blocks that form a supported MATLAB expression. The
MATLAB expressions in “Types of Operators in Variant Blocks for Different Activation Times” are
supported except for bitwise operations.

Example Model
This example shows how to use the Model Transformer to transform a model into a variant system.
The example uses the model rtwdemo_controlflow_opt. This model has three Switch blocks. The
control input to these Switch blocks is the Simulink.Parameter cond. The Model Transformer
dialog box and this example refer to cond as a system constant.

 Transform Model to Variant System

3-23

1 Open the model. In the Command Window, type rtwdemo_controlflow_opt.
2 Open the Switch1 Block Parameters dialog box. Change the Threshold parameter to 0. The

Threshold parameter must be an integer because after the variant transformation it is part of
the condition expression in the Variant Source block.

3 Repeat step 2 for the Switch blocks Switch1, Switch2, and Switch3.
4 Save the model to your working folder.

Perform Variant Transform on Example Model
1 In the Apps tab, Open the Model Transformer by selecting Model Transformer. Or, in the

Command Window, type:
mdltransformer('rtwdemo_controlflow_opt')

2 Select the check “Replace Modeling Patterns with Variant Blocks”.

3 Checking Systems Interactively

3-24

3 In the Specify system constant cell array field, you can specify a cell array of character
vectors consisting of Simulink.Parameters. The base workspace must contain their
definitions.

4 In the Prefix of transformed model name field, specify a prefix for the model name. If you do
not specify a prefix, the default is gen0.

5 Select Run This Check. The Model Transformer lists system constants and blocks that qualify to
be part of condition expressions in Variant Source or Variant Subsystem blocks. For the Model
Transformer to list a system constant, it must be a Simulink.Parameter object of scalar type.
For this example, Cond qualifies to part of a condition expression.

6 If you do not want one of the transformations to occur, you can clear the check box next to it.
7 Select Refactor Model. The Model Transformer provides a hyperlink to the transformed model

and hyperlinks to the corresponding blocks in the original model and the transformed model.

The transformed model or models are in the folder that has the prefix m2m plus the original model
name. For this example, the folder name is m2m_rtwdemo_controlflow_opt.

8 In the original model rtwdemo_controlflow_opt, right-click one of the Switch blocks. In the
menu, select Model Transformer > Traceability to Transformed Block. In the transformed
model gen0_rtwdemo_controlflow_opt, the corresponding Variant Source block is
highlighted.

9 In the transformed model gen0_rtwdemo_controlflow_opt, right-click one of the Switch
blocks. In the menu, select Model Transformer > Traceability to Original Block. In the
original model rtwdemo_controlflow_opt, the corresponding Switch block is highlighted.

 Transform Model to Variant System

3-25

Model Transformation Limitations
The Model Transformer tool has these limitations:

• In order to run the Model Transformer on a model, you must be able to simulate the model.
• If an If Action Subsystem block drives a Merge block, and the Merge block has another inport that

is either unconnected or driven by another conditional subsystem, the Model Transformer does
not add a Variant Source block. This modeling pattern produces a warning and an excluded
candidate message.

• The Model Transformer cannot perform a variant transformation for every modeling pattern. This
list contains some exceptions:

• The model contains a Model block that references a protected model.
• A model contains a Variant Source block with the Variant activation time parameter set to

update diagram.
• After you run one or more tasks, you cannot rerun the tasks because the Run this Check and

Run All buttons are deactivated. If you want to rerun a task, reset the Model Transformer by
right-clicking Model Transformer and selecting Reset.

• Do not change a model in the middle of a transformation. If you want to change the model, close
the Model Transformer, modify the model, and then reopen the Model Transformer.

• For the hyperlinks in the Model Transformer to work, you must have the model to which the links
point to open.

See Also

Related Examples
• “Variant Systems”

3 Checking Systems Interactively

3-26

Improve Code Efficiency by Merging Multiple Interpolation
Using Prelookup Blocks

You can use the Model Transformer tool to refactor a modeling pattern to improve the efficiency of
generated code. The Model Transformer identifies and merges multiple Interpolation Using
Prelookup blocks that have same input signals connected from the outputs of Prelookup blocks into a
single Interpolation Using Prelookup block.

The Model Transformer works if the properties of Interpolation Using Prelookup blocks are same
except for Table data. Reducing the number of Interpolation Using Prelookup blocks in a model
reduces the number of variable assignments in the code, which improves the efficiency of the
generated code. You can use the Model Transformer app or programmatic commands to refactor the
model.

The Model Transformer can replace multiple Interpolation Using Prelookup that:

• Have the same input signals connected to Prelookup blocks with the same index and fraction
parameters

• Have the output signals connected to the same Multiport Switch block
• Have the same breakpoint specification, values, and data types
• Have the same algorithm parameters
• Have the same data type for fraction parameters

Merge Interpolation Using Prelookup Blocks Using the Model
Transformer App
This example shows how to use the Model Transformer app and APIs to identify redundant
Interpolation Using Prelookup blocks, and then refactor the model.

 Improve Code Efficiency by Merging Multiple Interpolation Using Prelookup Blocks

3-27

The model mInterpolationOptim uses Prelookup blocks to input signals to several Interpolation
Using Prelookup blocks. The output of these Interpolation blocks are connected to a Multiport Switch
block.

In this example, you identify Interpolation Using Prelookup blocks that qualify for transformation and
replace them with a single Interpolation Using Prelookup block and Constant blocks connected to
Multiport Switch block.

1 Open the model mInterpolationOptim. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
mInterpolationOptim

2 Save the model to your working folder.
3 On the Apps tab, click Model Transformer.
4 In the Transformations folder, select the “Replace Interpolation Using Prelookup Blocks” check.
5 Select the Skip Interpolation-ND blocks in libraries from this transformation option to

avoid replacing Interpolation Using Prelookup blocks that are linked to a library.

3 Checking Systems Interactively

3-28

6 In the Prefix of transformed model field, specify a prefix for the refactored model.
7 Click Run This Check. The top Result table contains hyperlinks to the Interpolation Using

Prelookup blocks and the corresponding Multiport Switch block port indices.
8 Clear the check boxes under Candidate Groups for the groups that you do not want to

transform.
9 Click Refactor Model. The Result table contains a hyperlink to the new model. The table

contains hyperlinks to the shared Interpolation Using Prelookup blocks and corresponding
Multiport Switch block ports. The tool also creates an m2m_mInterpolationOptim folder that
contains the new gen_mInterpolationOptim.slx model.

The two Prelookup blocks Prelookup and Prelookup1 in the gen_mInterpolationOptim.slx
model connect to the single Interpolation Using Prelookup block and the Constant blocks are
connected to the Multiport Switch block port to give the Table data as input.

 Improve Code Efficiency by Merging Multiple Interpolation Using Prelookup Blocks

3-29

Merge Interpolation Using Prelookup Blocks Programmatically
To use the Model Transformer programmatically, use:

• Simulink.ModelTransform.CommonSourceInterpolation.identifyCandidates to
identify candidates for transformation

• Simulink.ModelTransform.CommonSourceInterpolation.refactorModel to refactor the
model

1 Save the model in the current working directory.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
mInterpolationOptim

2 To identify candidates qualified for transformation, use the function
Simulink.ModelTransform.CommonSourceInterpolation.identifyCandidates to
create the object transformResults.
transformResults = Simulink.ModelTransform.CommonSourceInterpolation.identifyCandidates('mInterpolationOptim')

transformResults =

 Results with properties:

3 Checking Systems Interactively

3-30

 Candidates: [1×1 struct]

The transformResults object has one property, Candidates, that is a structure with two
fields, InterpolationPorts and SwitchPorts.

transformResults.Candidates =

 struct with fields:

 InterpolationPorts: [4×1 struct]
 SwitchPorts: [4×1 struct]

3 View the InterpolationPorts field.
transformResults.Candidates.InterpolationPorts =

 4×1 struct array with fields:

 Block
 Port

The InterpolationPorts field consists of two arrays, Block and Port. Similarly, the
SwitchPorts has the same properties.

4 Convert the Candidates.InterpolationPorts and Candidates.SwitchPorts fields to
tables.

struct2table(transformResults.Candidates.InterpolationPorts)
struct2table(transformResults.Candidates.SwitchPorts)

ans =
 4×2 table
 Block Port
 ___ ____
 {'mInterpolationOptim/Interpolation↵Using Prelookup' } 0
 {'mInterpolationOptim/Interpolation↵Using Prelookup1'} 0
 {'mInterpolationOptim/Interpolation↵Using Prelookup2'} 0
 {'mInterpolationOptim/Interpolation↵Using Prelookup3'} 0

ans =
 4×2 table
 Block Port
 ______________________________ ____
 {'mInterpolationOptim/Multiport_Switch'} 1
 {'mInterpolationOptim/Multiport_Switch'} 2
 {'mInterpolationOptim/Multiport_Switch'} 3
 {'mInterpolationOptim/Multiport_Switch'} 4

Use the SwitchPorts to see which Interpolation Using Prelookup blocks are connected to which
Multiport Switch block port.

5 To refactor the model, use the function
Simulink.ModelTransform.CommonSourceInterpolation.refactorModel. This function
uses the object transformResults from identifyCandidate function.
refactorResults = Simulink.ModelTransform.CommonSourceInterpolation.refactorModel(transformResults)

refactorResults =

 Improve Code Efficiency by Merging Multiple Interpolation Using Prelookup Blocks

3-31

 RefactorResults with properties:

 ModelName: 'mInterpolationOptim'
 ModelDirectory: ''
 TraceabilityInfo: [4×1 containers.Map]

The ModelName and ModelDirectory properties of the refactorResults object list the name
and location of the refactored model. TraceabilityInfo is a containers.Map object that lists
the block tracing information.

Conditions and Limitations
The Model Transformer cannot replace Interpolation Using Prelookup blocks if:

• The Interpolation Using Prelookup blocks are in commented-out regions or inactive variants.
• The Interpolation Using Prelookup blocks are masked.
• The Model Transformer app does not replace Interpolation Using Prelookup blocks across the

boundaries of atomic subsystems, referenced models, or library-linked blocks.

See Also

Related Examples
• “Refactor Models”
• “Using the Prelookup and Interpolation Blocks”

3 Checking Systems Interactively

3-32

Enable Component Reuse by Using Clone Detection
Clones are modeling patterns that have identical block types and connections. The Clone Detector
app identifies clones across the model or in a subsystem boundaries. You can use the Clone Detector
app or the MATLAB commands programmatically to reuse components by creating library blocks of
the clone patterns and replacing the clones with links to those library blocks. You can also use it to
link the clones from an existing library.

Exact Clones and Similar Clones
There are two types of clones: exact clones and similar clones. Exact clones have identical block
types, connections, and parameter values. Similar clones have identical block types and connections,
but they can have different block parameter values. For example, the value of a Gain block can be
different in similar clones but must be the same in exact clones.

Exact clones and similar clones can have these differences:

• Two clones can have a different sorted order.
• The length of signal lines and the location and size of blocks can be different if the block

connections are the same.
• Blocks and signals can have different names.

After you identify clones, you can replace them with links to library blocks. Similar clones link to
masked library subsystems.

Specify Where to Detect Clones
The Clone Detector app supports two options for detecting clones in a model. You can search for
clones in a subsystem or anywhere across the model using clone detection Settings.

• Subsystem clones: Identifies clones only in a subsystems.
• Clones across model: Identifies clones across the model.

Identify Exact and Similar Clones
This example shows how to use the Clone Detector app to identify exact and similar subsystem
clones, and then replace them with links to library blocks.

1 Open the model ex_clone_detection. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection

 Enable Component Reuse by Using Clone Detection

3-33

2 Save the model to your working folder. A model must be open to access the app.
3 On the Apps tab, click Clone Detector. Alternatively, on the MATLAB command line enter:

clonedetection("ex_clone_detection")

4 The app opens the Clone Detector tab. This example takes you through each section.

Set Up panes for Clone Detection

The app displays information on multiple panes. You can select three of the panes under the View
menu. The panes are:

• Help. Select to access a help pane that contains an overview of the clone detection workflow.
• Results. Select to view the Clone Detection Results and Actions pane.
• Properties. Select to view the Detected Clone Properties pane.

3 Checking Systems Interactively

3-34

Set the Parameters for Clone Detection

You can set up the parameters for clone detection by using the Settings drop-down menu.

• Select Ignore differences in > Signal Names to identify and classify clones when the signal
names are different.

• Select Ignore differences in > Block Properties to identify and classify clones when the block
properties are different. For more information about block properties, see “Specify Block
Properties”.

• Click Replace Exact Clones With Subsystem References to find and replace exact clones with
subsystem reference blocks.

• Click Exclude Components to access the Exclude model references, Exclude library Links,
and Exclude inactive and commented out regions options. Enabling the Exclude inactive
and commented out regions option identifies variable number clones because of Variant Source
block in the model. For more information, see “Exclude Components from Clone Detection”.
Enabling the Exclude model references and Exclude library Links options will lead to
identification of fewer clones, depending on the model.

• Click Match Patterns with Libraries and select an external library to look for clones. For more
information, see “Identify and Replace Clones in Model Libraries” on page 3-38.

• The Maximum number of unmatched block parameters is 50 by default. This represents the
number of parameters that can vary among subsystems and still be classified as similar clones.
You may reduce this number to identify and classify fewer similar clones. Setting the value to zero,
will identify only exact clones.

• Click Detect Clones Across Model to enable detect clones anywhere across the model. You can
choose the values of Minimum Region Size and Minimum Clone Group Size to detect the
clones with these matching blocks. The default size is set to 2.

Identify Subsystem Clones in the Model

1 To find clones within the model, click on the subsystem that you want to analyse. In the Detect
section, the selected subsystem name appears under Find Clones in System tab. Use the pin to
remember the selection.

2 Click Find Clones to identify clones.
3 The color of the subsystems changes to reflect the similar and exact clones identified. The red

highlighting represents exact clones and the different shades of blue highlighting represent
similar clones.

 Enable Component Reuse by Using Clone Detection

3-35

Clone Detector app creates a backup folder in the working directory. The backup folder name has the
prefix m2m_<model name>. It saves the clones data in a MAT-file. You can also find the backup of the
original model in this folder after refactoring the model to replace clones with links to library blocks.

Analyze the Clone Detection Results

After identifying clones, you can analyze the results of the clone detection and make changes to the
model as necessary. To analyze the results:

1 In the Clone Detection Results and Actions panel, on the Clone Results tab, a list of clone
groups are displayed.

2 Click the > symbol next to Exact Clone Group 1 to see all of the subsystems that are exact
clones, the number of blocks, and the block differences. Repeat the same for Similar Clone
Group 1 and Similar Clone Group 2.

3 In the Clone Detection Results and Actions pane, click the Logs tab. Click the hyperlink on
the Logs pane.

A new window opens the clone detection results with an integrated report on the identified
clones, the types of clones, the parameters of detection, and the exclusions in the clone
detection.

4 Click the Model Hierarchy tab. Click the hyperlinks to highlight the particular subsystems in
the model. To go back to highlighting all clones, on the Clone Results tab, click the Highlight
all clones.

5 On the Clone Results tab, expand Similar Clone Group 1 and click the View Parameter
Difference hyperlink.

3 Checking Systems Interactively

3-36

6 On the Detected Clone Properties panel, click the ex_clone_detection/SS5/G9 hyperlink,
which opens the gain block G9 in the subsystem SS5, where you can access the parameter that
are different from the baseline subsystem.

7 Change value of the gain parameter from A to B and click Find Clones. This will reclassify
Similar Clone Group 1 to Exact Clone Group 2 because you resolved the difference in
the subsystems and converted it into an exact clone.

8 Under the Refactor Benefits panel, you can consider the percentage of different types of clones
present.

In the Clone Detection Results and Actions pane, in the Clone Results tab, select the clones
you would like to refactor. Select all the clone groups for refactoring to reduce 22.5806% of the
model reuse.

Replace Clones
1 You may use the default library name or change the name of the library file and its location on

the Clone Results tab before replacing the clones.

 Enable Component Reuse by Using Clone Detection

3-37

2 Click Replace Clones.

The model is refactored and the clones are replaced with links to the newLibraryFile library
file in your working directory.

3 You can restore the model to its original configuration with clones by clicking Restore button
found in the clone detector log that was generated on the Logs tab of the Clone Detection
Results and Actions pane.

Identify and Replace Clones in Model Libraries
1 Open the library ex_clone_library. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_library

2 Click Settings > Match Patterns with Libraries and select ex_clone_library.slx. Then
click Find Clones.

Note Identifying and refactoring clones using external libraries must be done separately in the
model. During model refactoring only exact clones within the libraries will be replaced with
library links.

3 Click Replace Clones.

The model is refactored with the exact clones replaced.

Check the Equivalency of the Model
If you have a Simulink Test license, you can click Check Equivalency. A window opens and displays
that the current model has been successfully refactored into an equivalent model.

3 Checking Systems Interactively

3-38

See Also

Related Examples
• “Custom Libraries”
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink Coder)
• Clone Detector
• “Replace Exact Clones with Subsystem Reference” on page 3-86

 Enable Component Reuse by Using Clone Detection

3-39

Improve Model Readability by Eliminating Local Data Store
Blocks

You can use the Model Transformer tool to improve model readability by replacing Data Store
Memory, Data Store Read, and Data Store Write blocks with either a direct signal line, a Delay block,
or a Merge block. For bus signals, the tool might also add Bus Creator or Bus Selector blocks as part
of the replacement. Replacing these blocks improves model readability by making data dependency
explicit. The Model Transformer creates a model with these replacements. The new model has the
same functionality as the existing model.

The Model Transformer can replace these data stores:

• For signals that are not buses, if a Data Store Read block executes before a Data Store Write
block, the tool replaces these blocks with a Delay block.

• For signals that are not buses, if a Data Store Write block executes before a Data Store Read
block, the tool replaces these blocks with a direct connection.

• For bus signals, if the write to bus elements executes before the read of the bus, the tool replaces
the Data Store Read and Data Store Write blocks with a direct connection and a Bus Creator
block.

• For bus signals, if the write to the bus executes before the read of bus elements, the tool replaces
the Data Store Read and Data Store Write blocks with a direct connection and a Bus Selector
block.

• For conditionally executed subsystems, the tool replaces the Data Store Read and Data Store
Write blocks with a direct connection and a Merge block. For models in which a read/write pair
crosses an If subsystem boundary and the Write block is inside the subsystem, the tool might also
add an Else subsystem block.

The Model Transformer tool eliminates only local data stores that Data Store Memory blocks define.
The tool does not eliminate global data stores. For the Data Store Memory block, on the Signal
Attributes tab in the block parameters dialog box, you must clear the Data store name must
resolve to Simulink signal object parameter.

Example Model
The model ex_data_store_elimination contains the two local data stores: B and A. For data
store B, there are two Data Store Read blocks and one Data Store Write block. For data store A, there
is one Data Store Write block and one Data Store Read block. The red numbers represent the sorted
execution order.

3 Checking Systems Interactively

3-40

Replace Data Store Blocks
Identify data store blocks that qualify for replacement. Then, create a model that replaces these
blocks with direct signal lines, Delay blocks, or Merge blocks.

 Improve Model Readability by Eliminating Local Data Store Blocks

3-41

1 Open the model ex_data_store_elimination. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_data_store_elimination

2 Save the model to your working folder.
3 On the Apps tab, click Model Transformer. Alternatively, on the MATLAB command prompt,

type this command:

mdltransformer('ex_data_store_elimination')

.
4 In the Transformations folder, select the Eliminate data store blocks check.
5 In the Prefix of refactored model field, specify a prefix for the refactored model.
6 Click the Run This Check button. The top Result table contains hyperlinks to the Data Store

Memory blocks and the corresponding Data Store Read and Data Store Write blocks that qualify
for elimination.

7 Click the Refactor Model button. The bottom Result table contains a hyperlink to the new
model. The tool creates an m2m_ex_data_store_replacement folder. This folder contains the
gen_ex_data_store_replacement.slx model.

For local data store A, gen_ex_bus_struct_in_code.slx contains a Delay block in place of the
Data Store Write block and a direct signal connection in place of the Data Store Read block. For local
data store B, gen_ex_bus_struct_in_code.slx contains a direct signal connection from the Bias
block to Out2.

3 Checking Systems Interactively

3-42

Limitations
The Model Transformer does not replace Data Store Read and Write blocks that meet these
conditions:

• They cross boundaries of conditionally executed subsystems such as Enabled, Triggered, or
Function-Call subsystems and Stateflow Charts.

• They do not complete mutually exclusive branches of If-Action subsystems.
• They cross boundaries of variants.
• They have more than one input or output.
• They access part of an array.
• They execute at different rates.
• They are inside different instances of library subsystems and have a different relative execution

order.

See Also

Related Examples
• “Refactor Models”
• “Data Stores”
• “Data Stores in Generated Code” (Simulink Coder)

 Improve Model Readability by Eliminating Local Data Store Blocks

3-43

Improve Efficiency of Simulation by Optimizing Prelookup
Operation of Lookup Table Blocks

Improve the efficiency of your model simulation by using the Model Transformer tool to identify n-D
Lookup Table blocks that qualify for transformation and replacing them with Interpolation blocks and
shared Prelookup blocks. Eliminating the redundant Prelookup blocks improves the simulation speed
for linear interpolations. The Model Transformer creates a model with these replacements blocks.
This new model has the same functionality as the original model.

The Model Transformer can replace Lookup Table blocks that meet the following conditions:

• The same source drives the Lookup Table blocks.
• The Lookup Table blocks share the same breakpoint specification, values, and data types.
• The breakpoint input port of the Lookup Tables is the connected to the same input source.
• The Lookup Table blocks share the same algorithm parameters in the block parameters dialog

box.
• The Lookup Table blocks share the same data type for fractions parameters in the block

parameters dialog box.

Example Model
The model mLutOptim contains three Lookup Table blocks: LUT1, LUT2 and LUT3. The blocks are
driven from the same input sources In1 and In2.

3 Checking Systems Interactively

3-44

Merge Prelookup Operation
Identify n-D Lookup Table blocks that qualify for transformation and replace them with a single
shared Prelookup block and multiple Interpolation blocks.

1 Open the model mLutOptim. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))

mLutOptim
2 Save the model to your working folder.
3 On the Apps tab, click Model Transformer.
4 In the Transformations folder, select the “Transform Table Lookup Blocks to Prelookup and

Interpolation Using Prelookup Blocks” check.
5 Select the Skip Lookup Table (n-D) blocks in the libraries from this transformation option

to avoid replacing Lookup Table blocks that are linked to a library.

 Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

3-45

6 In the Prefix of refactored model field, specify a prefix for the new refactored model.
7 Click the Run This Check button. The top Result table contains hyperlinks to the Lookup Table

blocks and the corresponding input port indices.
8 Clear the Candidate Groups that you do not want to transform.
9 Click the Refactor Model button. The Result table contains a hyperlink to the new model. The

table also contains hyperlinks to the shared Prelookup block and corresponding Interpolation
blocks. Those blocks replaced the original Lookup Table blocks. The tool creates an
m2m_mLUTOptim folder. This folder contains the new gen_mLUTOptim.slx model.

The Lookup Table blocks LUT1, LUT2, and LUT3 of gen_mLutOptim.slx have two shared Prelookup
table blocks, LUT1_Prelookup_1 and LUT1_Prelookup_2, one for each data source. There are also
three Interpolation blocks LUT1_InterpND, LUT2_InterpND, and LUT3_InterpND that replace the
Lookup Table blocks.

3 Checking Systems Interactively

3-46

Conditions and Limitations
The Model Transformer cannot replace Lookup Table blocks if:

• A Rate Transition block drives the Lookup Table blocks.
• The Lookup Table blocks are commented-out regions and inactive variants.
• The Lookup Table blocks are masked.
• The Output block's data type is set to Inherit:Same as first input.
• The Lookup Table block Interpolation method and Extrapolation method on the Algorithm

pane of the block parameters dialog box is set to Cubic spline.
• The Lookup Table block Input settings on the Algorithm pane of the block parameters dialog

box has Use one input port for all input data selected.

The Lookup Table block Code generation on the Algorithm pane of the block parameters dialog
box has Support tunable table size in code generation selected.

 Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

3-47

The Model Transformer tool does not replace Lookup Table blocks across the boundaries of Atomic
subsystems, Referenced Models, and library-linked blocks.

See Also

Related Examples
• “Refactor Models”
• “Transform Table Lookup Blocks to Prelookup and Interpolation Using Prelookup Blocks”

3 Checking Systems Interactively

3-48

Model Checks for DO-178C/DO-331 Standard Compliance
You can check that your model or subsystem complies with selected aspects of the DO-178C safety
standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-4 and run the checks in
By Task > Modeling Standards for DO-178C/DO-331.

The table lists the DO-178C/DO-331 checks.

Subfolder Model Advisor Checks
N/A “Display model version information”
MISRA “Check for missing error ports for AUTOSAR receiver interfaces”

“Check for unsupported block names”
“Check bus object names that are used as bus element names”
“Check for equality and inequality operations on floating-point values”
“Check for bitwise operations on signed integers”
“Check integer word length”
“Check for missing const qualifiers in model functions”
“Check for recursive function calls”
“Check for switch case expressions without a default case”

Bug Reports “Display bug reports for DO Qualification Kit” (DO Qualification Kit)
“Display bug reports for Simulink Check” (DO Qualification Kit)
“Display bug reports for Simulink Coverage” (DO Qualification Kit)
“Display bug reports for Requirements Toolbox” (DO Qualification Kit)
“Display bug reports for Simulink Code Inspector” (DO Qualification
Kit)
“Display bug reports for Simulink Report Generator” (DO Qualification
Kit)
“Display bug reports for Simulink” (DO Qualification Kit)
“Display bug reports for Simulink Test” (DO Qualification Kit)
“Display bug reports for Simulink Design Verifier” (DO Qualification Kit)
“Display bug reports for Embedded Coder” (DO Qualification Kit)
“Display bug reports for Polyspace Bug Finder” (DO Qualification Kit)
“Display bug reports for Polyspace Bug Finder Server” (DO
Qualification Kit)
“Display bug reports for Polyspace Code Prover” (DO Qualification Kit)
“Display bug reports for Polyspace Code Prover Server” (DO
Qualification Kit)

The following are the High-Integrity System Modeling checks that are applicable for the DO-178C/
DO-331 standards.

 Model Checks for DO-178C/DO-331 Standard Compliance

3-49

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128/EN 50657 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems
• By Task > Modeling Standards for ISO 25119 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems
and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

This table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling”.

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”
Check for inconsistent vector indexing methods “hisl_0021: Consistent vector indexing method”
Check usage of variant blocks “hisl_0023: Verification of variant blocks”
Check for root Inports with missing properties “hisl_0024: Inport interface definition”
Check usage of Relational Operator blocks “hisl_0017: Usage of blocks that compute

relational operators (2)”
Check relational comparisons on floating-point
signals

“hisl_0016: Usage of blocks that compute
relational operators”

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator block”
Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
Check usage of For and While Iterator
subsystems

“hisl_0007: Usage of For Iterator or While
Iterator subsystems”

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
Check usage of If blocks and If Action Subsystem
blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks”

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks”

3 Checking Systems Interactively

3-50

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related optimization settings for
logic signals

“hisl_0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)”

Check safety-related block reduction optimization
settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”

Check safety-related optimization settings for
application lifespan

“hisl_0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”

Check safety-related optimization settings for
data initialization

“hisl_0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”

Check safety-related optimization settings for
data type conversions

“hisl_0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values”

Check safety-related optimization settings for
division arithmetic exceptions

“hisl_0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”

Check safety-related code generation settings for
comments

“hisl_0038: Configuration Parameters > Code
Generation > Comments”

Check safety-related code generation interface
settings

“hisl_0039: Configuration Parameters > Code
Generation > Interface”

Check safety-related code generation settings for
code style

“hisl_0047: Configuration Parameters > Code
Generation > Code Style”

Check safety-related code generation identifier
settings

“hisl_0049: Configuration Parameters > Code
Generation > Identifiers”

Check usage of Abs blocks “hisl_0001: Usage of Abs block”
Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl_0002: Usage of remainder and reciprocal
operations”

Check usage of Math Function blocks (log and
log10 functions)

“hisl_0004: Usage of natural logarithm and base
10 logarithm operations”

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of input
interfaces”

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces”

Check state machine type of Stateflow charts “hisf_0001: State Machine Type”
Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf_0013: Usage of transition paths (crossing
parallel state boundaries)”

Check Stateflow charts for ordering of states and
transitions

“hisf_0002: User-specified state/transition
execution order”

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”

 Model Checks for DO-178C/DO-331 Standard Compliance

3-51

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check Stateflow charts for uniquely defined data
objects

“hisl_0061: Unique identifiers for clarity”

Check Stateflow charts for strong data typing “hisf_0015: Strong data typing (casting variables
and parameters in expressions)”

Check assignment operations in Stateflow charts “hisf_0065: Type cast operations in Stateflow to
improve code compliance”

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance”

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries”

Check MATLAB Function metrics “himl_0003: Complexity of user-defined MATLAB
Functions”

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”

Check safety-related model referencing settings “hisl_0037: Configuration Parameters > Model
Referencing”

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver”

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters > Solver >
Simulation time”

Check safety-related solver settings for solver
options

“hisl_0041: Configuration Parameters > Solver >
Solver options”

Check safety-related solver settings for tasking
and sample-time

“hisl_0042: Configuration Parameters > Solver >
Tasking and sample time options”

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time”

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”

Check safety-related diagnostic settings for data
used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”

Check safety-related diagnostic settings for data
store memory

“hisl_0013: Usage of data store blocks”

Check safety-related diagnostic settings for type
conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion”

Check safety-related diagnostic settings for signal
connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”

Check safety-related diagnostic settings for bus
connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”

3 Checking Systems Interactively

3-52

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility”

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization”

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving”

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow”

Check model object names “hisl_0032: Model object names”
Check for model elements that do not link to
requirements

“hisl_0070: Placement of requirement links in a
model”

Check for inappropriate use of transition paths “hisf_0014: Usage of transition paths (passing
through states)”

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
Check data types for blocks with index signals “hisl_0022: Data type selection for index signals”
Check model file name “hisl_0031: Model file names”
Check if/elseif/else patterns in MATLAB Function
blocks

“himl_0006: MATLAB code if / elseif / else
patterns”

Check switch statements in MATLAB Function
blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns”

Check global variables in graphical functions “hisl_0062: Global variables in graphical
functions”

Check for length of user-defined object names “hisl_0063: Length of user-defined object names
to improve MISRA C:2012 compliance”

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems”

Check usage of standardized MATLAB function
headers

“himl_0001: Usage of standardized MATLAB
function headers”

Check usage of relational operators in MATLAB
Function blocks

“himl_0008: MATLAB code relational operator
data types”

Check usage of logical operators and functions in
MATLAB Function blocks

“himl_0010: MATLAB code with logical operators
and functions”

Check type and size of conditional expressions “himl_0011: Data type and size of condition
expressions”

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”

 Model Checks for DO-178C/DO-331 Standard Compliance

3-53

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
“Check for divide-by-zero calculations” “hisl_0067: Protect against divide-by-zero

calculations”
Check data type of loop control variables “hisl_0102: Data type of loop control variables to

improve MISRA C:2012 compliance”
Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl_0020: Blocks not recommended for MISRA
C:2012 compliance”

Check safety-related optimization settings for
specified minimum and maximum values

“hisl_0056: Configuration Parameters > Code
Generation > Optimization > Optimize using the
specified minimum and maximum values”

“Check usage of remainder and reciprocal
operations”

“hisl_0002: Usage of remainder and reciprocal
operations”

“Check usage of square root operations” “hisl_0003: Usage of square root operations”
“Check usage of log and log10 operations” “hisl_0004: Usage of natural logarithm and base

10 logarithm operations”
“Check usage of Reciprocal Sqrt blocks” “hisl_0028: Usage of Reciprocal Square Root

blocks”
“Check safety-related settings for hardware
implementation”

“hisl_0071: Configuration Parameters >
Hardware Implementation >Inconsistent
hardware implementation settings”

“Check usage of recursions” hisf_0004: Protect against recursive function calls
to improve code compliance

“Check MATLAB functions not supported for code
generation”

“himl_0012: Usage of MATLAB functions for code
generation”

“Metrics for generated code complexity” “himl_0013: Limitation of built-in MATLAB
Function complexity”

“Check for parameter tunability ignored for
referenced models”

“hisl_0072: Usage of tunable parameters for
referenced models”

“Check usage of bit-shift operations” “hisl_0073: Usage of bit-shift operations”
“Check safety-related diagnostic settings for
variants”

“hisl_0074: Configuration Parameters >
Diagnostics > Modeling issues related to
variants”

“Check for disabled and parameterized library
links”

“hisl_0075: Usage of library links”

“Check for unreachable and dead code” “hisl_0101: Avoid operations that result in dead
logic to improve code compliance”

3 Checking Systems Interactively

3-54

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-4

 Model Checks for DO-178C/DO-331 Standard Compliance

3-55

Model Checks for DO-254 Standard Compliance
You can check that your model or subsystem complies with selected aspects of the DO-254 safety
standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-4 and run the checks in
By Task > Modeling Standards for DO-254.

For information on the DO-254 Software Considerations in Airborne Systems and Equipment
Certification and related standards, see Radio Technical Commission for Aeronautics (RTCA).

The table below lists the DO-254 checks.

DO-254 Checks
Display model version information
Identify disabled library links
Identify parameterized library links
Identify unresolved library links
Check for model reference configuration mismatch
Identify requirement links that specify invalid locations within documents
Identify requirement links with missing documents
Identify requirement links with path type inconsistent with preferences
Identify selection-based links having descriptions that do not match their requirements document
text

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
By Task > Modeling Standards for DO-254 > High-Integrity Systems

The table below lists the High Integrity System Model checks and their corresponding modeling
guidelines that support DO-254 Safety Standard. For more information about the High-Integrity
Modeling Guidelines, see “High-Integrity System Modeling”.

High Integrity System Model Checks Applicable High-Integrity System Modeling
Guidelines

Check for inconsistent vector indexing methods “hisl_0021: Consistent vector indexing method”
Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl_0023: Verification of variant blocks”

Check for root Inports with missing properties “hisl_0024: Inport interface definition”
Check for Relational Operator blocks that equate
floating-point types

“hisl_0017: Usage of blocks that compute
relational operators (2)”

3 Checking Systems Interactively

3-56

https://www.rtca.org/

High Integrity System Model Checks Applicable High-Integrity System Modeling
Guidelines

Check relational comparisons on floating-point
signals

“hisl_0016: Usage of blocks that compute
relational operators”

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator block”
Check sample time-dependent blocks “hisl_0007: Usage of For Iterator or While

Iterator subsystems”
Check safety-related block reduction optimization
settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”

Check usage of Abs blocks “hisl_0001: Usage of Abs block”
Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of input
interfaces”

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces”

Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf_0013: Usage of transition paths (crossing
parallel state boundaries)”

Check Stateflow charts for ordering of states and
transitions

“hisf_0002: User-specified state/transition
execution order”

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”
Check Stateflow charts for uniquely defined data
objects

“hisl_0061: Unique identifiers for clarity”

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance”

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”

Check safety-related model referencing settings “hisl_0037: Configuration Parameters > Model
Referencing”

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”

Check safety-related diagnostic settings for type
conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion”

Check safety-related diagnostic settings for signal
connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”

Check safety-related diagnostic settings for bus
connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization”

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”

 Model Checks for DO-254 Standard Compliance

3-57

High Integrity System Model Checks Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving”

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow”

Check model object names “hisl_0032: Model object names”
Check for model elements that do not link to
requirements

“hisl_0070: Placement of requirement links in a
model”

Check for inappropriate use of transition paths “hisf_0014: Usage of transition paths (passing
through states)”

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
Check data types for blocks with index signals “hisl_0022: Data type selection for index signals”
Check model file name “hisl_0031: Model file names”
Check if/elseif/else patterns in MATLAB Function
blocks

“himl_0006: MATLAB code if / elseif / else
patterns”

Check switch statements in MATLAB Function
blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns”

Check global variables in graphical functions “hisl_0062: Global variables in graphical
functions”

Check for length of user-defined object names “hisl_0063: Length of user-defined object names
to improve MISRA C:2012 compliance”

Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems”

Check usage of standardized MATLAB function
headers

“himl_0001: Usage of standardized MATLAB
function headers”

Check usage of relational operators in MATLAB
Function blocks

“himl_0008: MATLAB code relational operator
data types”

Check usage of logical operators and functions in
MATLAB Function blocks

“himl_0010: MATLAB code with logical operators
and functions”

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”
Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
Check data type of loop control variables “hisl_0102: Data type of loop control variables to

improve MISRA C:2012 compliance”

HDL Code Advisor Checks
The HDL Code Advisor and the Model Advisor checks in HDL Coder verify and update your Simulink
model or subsystem for compatibility with HDL code generation. The Code Advisor has checks for:

• Model configuration settings
• Ports and Subsystem settings

3 Checking Systems Interactively

3-58

• Blocks and block settings
• Native Floating Point support
• Industry standard guidelines

The following table lists the HDL Code Advisor checks that are supported by DO-254 Safety
Standards:

HDL Code Advisor Checks Description
“Check for infinite and continuous sample time
sources” (HDL Coder)

Check source blocks with continuous sample
time.

“Check for unsupported blocks” (HDL Coder) Check for unsupported blocks for HDL code
generation.

“Check for large matrix operations” (HDL Coder) Check for large matrix operations.
“Identify unconnected lines, input ports, and
output ports”

Check for unconnected lines or ports.

“Identify disabled library links” Search model for disabled library links.
“Identify unresolved library links” Search the model for unresolved library links,

where the specified library block cannot be
found.

“Check for MATLAB Function block settings”
(HDL Coder)

Check HDL compatible settings for MATLAB
Function blocks.

“Check for Stateflow chart settings” (HDL Coder) Check HDL compatible settings for Stateflow
Chart blocks.

“Check Delay, Unit Delay and Zero-Order Hold
blocks for rate transition”

Identify Delay, Unit Delay, or Zero-Order Hold
blocks that are used for rate transition. Replace
these blocks with actual Rate Transition blocks.

“Check for unsupported storage class for signal
objects” (HDL Coder)

Check whether signal object storage class is
'ExportedGlobal' or 'ImportedExtern' or
'ImportedExternPointer'

“Check file extension” (HDL Coder) Check file extensions of VHDL files containing
entities.

“Check naming conventions” (HDL Coder) Check standard keywords used by EDA tools.
“Check top-level subsystem/port names” (HDL
Coder)

Check top-level module/entity and port names.

“Check module/entity names” (HDL Coder) Check module/entity names.
“Check signal and port names” (HDL Coder) Check signal and port name lengths.
“Check package file names” (HDL Coder) Check file name containing packages.
“Check generics” (HDL Coder) Check generics at top-level subsystem.
“Check clock, reset, and enable signals” (HDL
Coder)

Check naming convention for clock, reset, and
enable signals.

“Check architecture name” (HDL Coder) Check VHDL architecture name in the generated
HDL code.

“Check entity and architecture” (HDL Coder) Check whether the VHDL entity and architecture
are described in the same file.

 Model Checks for DO-254 Standard Compliance

3-59

HDL Code Advisor Checks Description
“Check clock settings” (HDL Coder) Check constraints on clock signals.
“Check for global reset setting for Xilinx and
Altera devices” (HDL Coder)

Check asynchronous reset setting for Altera®

devices and synchronous reset setting for Xilinx®

devices.
“Check inline configurations setting” (HDL
Coder)

Check whether you have
InlineConfigurations enabled.

“Check algebraic loops” (HDL Coder) Check model for algebraic loops.
“Check for visualization settings” (HDL Coder) Check model for display settings: port data types

and sample time color coding.
“Check delay balancing setting” (HDL Coder) Check Balance Delays is enabled.
“Check for model parameters suited for HDL
code generation” (HDL Coder)

Check for model parameters set up for HDL code
generation.

“Check for double datatypes in the model with
Native Floating Point” (HDL Coder)

Check for double data types in the model.

“Check for Data Type Conversion blocks with
incompatible settings” (HDL Coder)

Check conversion mode of Data Type Conversion
blocks.

“Check for HDL Reciprocal block usage” (HDL
Coder)

Check HDL Reciprocal blocks are not using
floating point types.

“Check for Relational Operator block usage”
(HDL Coder)

Check Relational Operator blocks which use
floating point types have boolean outputs.

“Check for unsupported blocks with Native
Floating Point” (HDL Coder)

Check for unsupported blocks with native
floating-point.

“Check for blocks that have nonzero output
latency” (HDL Coder)

Check for blocks that have nonzero output
latency with native floating-point.

“Check blocks with nonzero ulp error” (HDL
Coder)

Check for blocks that have nonzero ulp error with
native floating-point.

“Check for single datatypes in the model” (HDL
Coder)

Check for single data types in the model.

“Check initial conditions of enabled and triggered
subsystems” (HDL Coder)

Check for initial condition of enabled and
triggered subsystems.

“Check for invalid top level subsystem” (HDL
Coder)

Check for subsystems that cannot be at the top
level for HDL code generation.

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-4

3 Checking Systems Interactively

3-60

Model Checks for MAB and JMAAB Compliance
You can use the Model Advisor to verify that your model or subsystem complies with the MathWorks
Advisory Board (MAB) and Japan MATLAB Automotive Advisory Board modeling (JMAAB) guidelines.

Accessing the MAB and JMAAB Model Advisor Checks
To open the Model Advisor, in the Simulink editor, click the Modeling tab and select Model Advisor.
A System Selector ― Model Advisor dialog box opens. Select the model or system that you want to
review and click OK.

The MAB checks are available from these Model Advisor folders:

• By Product > Simulink Check > Modeling Standards > MAB Checks
• By Task > Modeling Standards for MAB

The JMAAB checks are available from these Model Advisor folders:

• By Product > Simulink Check > Modeling Standards > JMAAB Checks
• By Task > Modeling Standards for JMAAB

For information on using the Model Advisor, see “Run Model Advisor Checks and Review Results” on
page 3-4.

Modeling Guidelines and Model Advisor Checks for MAB and JMAAB
This table identifies MathWorks Advisor Board (MAB) guidelines, the corresponding Japan
MathWorks Automotive Advisor Board (JMAAB) guidelines, and Model Advisor check that you can use
to verify compliance with these guidelines. Additional information in the tables includes:

• MAB Modeling Guideline — Links to the MathWorks Advisory Board (MAB) guideline.
• Corresponding JMAAB Modeling Guideline — Identifies the JMAAB modelling guideline that

corresponds to the MAB guideline. To review the guideline, see Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow on the MathWorks website.

• Model Advisor Check — Provides links to the Model Advisor check that is used to verify
compliance to the modeling guideline.

When applicable, this column clarifies why a guideline does not have a corresponding check:

• No check — Indicates that the guideline can be checked by using a Model Advisor check,
however, the check does not currently exist.

• Not checkable — Indicates that it is not possible to verify compliance to this guideline by using
a Model Advisor check.

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

ar_0001: Usable characters for
file names

ar_0001 “Check file names”

 Model Checks for MAB and JMAAB Compliance

3-61

https://www.mathworks.com/solutions/mab-guidelines.html
https://www.mathworks.com/solutions/mab-guidelines.html

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

ar_0002: Usable characters for
folder names

ar_0002 “Check folder names”

jc_0241: Length restriction for
model file names

jc_0241 “Check length of model file
name”

jc_0242: Length restriction for
folder names

jc_0242 “Check length of folder name at
every level of model path”

jc_0201: Usable characters for
subsystem names

jc_0201 “Check Subsystem names”

jc_0231: Usable characters for
block names

jc_0231 “Check character usage in block
names”

jc_0211: Usable characters for
Inport blocks and Outport block

jc_0211 “Check port block names”

jc_0243: Length restriction for
subsystem names

jc_0243 “Check length of subsystem
names”

jc_0247: Length restriction for
block names

jc_0247 “Check length of block names”

jc_0244: Length restriction for
Inport and Outport names

jc_0244 “Check length of Inport and
Outport names”

jc_0222: Usable characters for
signal and bus names

jc_0222 “Check usable characters for
signal names and bus names”

jc_0232: Usable characters for
parameter names

jc_0232 “Check usable characters for
parameter names”

jc_0245: Length restriction for
signal and bus names

jc_0245 “Check length of signal and bus
names”

jc_0246: Length restriction for
parameter name

jc_0246 “Check length of parameter
names”

jc_0795: Usable characters for
Stateflow data names

jc_0795 “Check usable characters for
Stateflow data names”

jc_0796: Length restriction for
Stateflow data names

jc_0796 “Check length of Stateflow data
name”

jc_0791: Duplicate data name
definitions

jc_0791 “Check duplication of Simulink
data names”

jc_0792: Unused Data jc_0792 “Check unused data in Simulink
Model”

jc_0700: Unused data in
Stateflow block

jc_0700 “Check for unused data in
Stateflow Charts”

na_0019: Restricted variable
names

No corresponding JMAAB
guideline

“Check usage of restricted
variable names”

3 Checking Systems Interactively

3-62

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0011: Optimization
parameters for Boolean data
types

jc_0011 “Check Implement logic signals
as Boolean data (vs. double)”

jc_0642: Integer rounding mode
setting

jc_0642 “Check Signed Integer Division
Rounding mode”

jc_0806: Detecting incorrect
calculation results

jc_0806 “Check diagnostic settings for
incorrect calculation results”

jc_0021: Model diagnostic
settings

No corresponding JMAAB
guideline

“Check model diagnostic
parameters”

na_0004: Simulink model
appearance settings

na_0004 “Check for Simulink diagrams
using nonstandard display
attributes”

db_0043: Model font and font
size

db_0043 “Check Model font settings”

jm_0002: Block resizing jm_0002 No check
db_0142: Position of block
names

db_0142 “Check whether block names
appear below blocks”

jc_0061: Display of block names jc_0061 “Check the display attributes of
block names”

db_0140: Display of block
parameters

db_0140 “Check for nondefault block
attributes”

jc_0603: Model description jc_0603 “Check Model Description”
jc_0604: Using block shadow jc_0604 “Check if blocks are shaded in

the model”
db_0081: Unconnected signals
and blocks

db_0081 “Check for unconnected signal
lines and blocks”

db_0032: Signal line
connections

db_0032 “Check signal line connections”

db_0141: Signal flow in
Simulink models

db_0141 “Check signal flow in model
Check position of signal labels”

jc_0110: Direction of block jc_0110 “Check block orientation”
jc_0171: Clarification of
connections between structural
subsystems

jc_0171 “Check connections between
structural subsystems”

jc_0602: Consistency in model
element names

jc_0602 “Check for consistency in model
element names”

jc_0281: Trigger signal names jc_0281 “Check trigger signal names”
db_0143: Usable block types in
model hierarchy

db_0143 “Check for mixing basic blocks
and subsystems”

db_0144: Use of subsystems db_0144 Not checkable

 Model Checks for MAB and JMAAB Compliance

3-63

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0653: Delay block layout in
feedback loops

jc_0653 “Check for avoiding algebraic
loops between subsystems”

hd_0001: Prohibited Simulink
sinks

No corresponding JMAAB
guideline

“Check for prohibited sink
blocks”

na_0010: Usage of vector and
bus signals

na_0010 “Check usage of vector and bus
signals”

jc_0008: Definition of signal
names

jc_0008 “Check signal line labels”

jc_0009: Signal name
propagation

jc_0009 “Check for propagated signal
labels”

db_0097: Position of labels for
signals and buses

db_0097 “Check signal flow in model
Check position of signal labels”

na_0008: Display of labels on
signals

No corresponding JMAAB
guideline

“Check signal line labels”

na_0009: Entry versus
propagation of signal labels

No corresponding JMAAB
guideline

“Check for propagated signal
labels”

db_0110: Block parameters db_0110 “Check usage of tunable
parameters in blocks”

db_0112: Usage of index db_0112 “Check Indexing Mode”
jc_0645: Parameter definition
for calibration

jc_0645 “Check if tunable block
parameters are defined as
named constants”

jc_0641: Sample time setting jc_0641 “Check for sample time setting”
jc_0643: Fixed-point setting jc_0643 “Check usage of fixed-point data

type with non-zero bias”
jc_0644: Type setting jc_0644 “Check type setting by data

objects”
db_0146: Block layout in
conditional subsystems

db_0146 “Check position of conditional
blocks and iterator blocks”

jc_0640: Initial value settings
for Outport blocks in conditional
subsystems

jc_0640 “Check undefined initial output
for conditional subsystems”

jc_0659: Usage restrictions of
signal lines input to Merge
blocks

jc_0659 “Check usage of Merge block”

na_0003: Usage of If blocks na_0003 “Check logical expressions in If
blocks”

jc_0656: Usage of Conditional
Control blocks

jc_0656 “Check default/else case in
Switch Case blocks and If
blocks”

3 Checking Systems Interactively

3-64

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0657: Retention of output
value based on conditional
control flow blocks and Merge
blocks

jc_0657 Not checkable

na_0002: Appropriate usage of
basic logical and numerical
operations

na_0002 “Check fundamental logical and
numerical operations”

jc_0121: Usage of add and
subtraction blocks

jc_0121 “Check usage of Sum blocks”

jc_0610: Operator order for
multiplication and division block

jc_0610 “Check operator order of
Product blocks”

jc_0611: Input sign for
multiplication and division
blocks

jc_0611 “Check signs of input signals in
product blocks”

jc_0794: Division in Simulink jc_0794 “Check for division by zero in
Simulink”

jc_0805: Numerical operation
block inputs

jc_0805 No check

jc_0622: Usage of Fcn blocks jc_0622 “Check for parentheses in Fcn
block expressions”

jc_0621: Usage of Logical
Operator blocks

jc_0621 “Check icon shape of Logical
Operator blocks”

jc_0131: Usage of Relational
Operator blocks

jc_0131 “Check usage of Relational
Operator blocks”

jc_0800: Comparing floating-
point types in Simulink

jc_0800 “Comparing floating point types
in Simulink”

jc_0626: Usage of Lookup Table
blocks

jc_0626 “Check usage of Lookup Tables”

jc_0623: Usage of continuous-
time Delay blocks and discrete-
time Delay blocks

jc_0623 “Check usage of Memory and
Unit Delay blocks”

jc_0624: Usage of Tapped Delay
blocks/Delay blocks

jc_0624 “Check for cascaded Unit Delay
blocks”

jc_0627: Usage of Discrete-Time
Integrator blocks

jc_0627 “Check usage of Discrete-Time
Integrator block”

jc_0628: Usage of Saturation
blocks

jc_0628 “Check usage of the Saturation
blocks”

jc_0651: Implementing a type
conversion

jc_0651 “Check output data type of
operation blocks”

db_0042: Usage of Inport and
Outport blocks

db_0042 “Check position of Inport and
Outport blocks”

 Model Checks for MAB and JMAAB Compliance

3-65

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0081: Inport and Outport
block icon display

jc_0081 “Check display for port blocks”

na_0011: Scope of Goto and
From blocks

na_0011 “Check scope of From and Goto
blocks”

jc_0161: Definition of Data Store
Memory blocks

jc_0161 “Check for usage of Data Store
Memory blocks”

jc_0141: Usage of the Switch
blocks

jc_0141 “Check usage of Switch blocks”

jc_0650: Block input/output data
type with switching function

jc_0650 “Check input and output
datatype for Switch blocks”

jc_0630: Usage of Multiport
Switch blocks

jc_0630 “Check settings for data ports in
Multiport Switch blocks”

na_0020: Number of inputs to
variant subsystems

na_0020 “Check for missing ports in
Variant Subsystems”

na_0036: Default variant na_0036 “Check use of default variants”
na_0037: Use of single variable
for variant condition

na_0037 “Check use of single variable
variant conditionals”

db_0123: Stateflow port names No corresponding JMAAB
guideline

“Check for names of Stateflow
ports and associated signals”

db_0125: Stateflow local data db_0125 “Check definition of Stateflow
data”

db_0126: Defining Stateflow
events

db_0126 “Check definition of Stateflow
events”

jc_0701: Usable number for first
index

jc_0701 “Check usable number for first
index”

jc_0712: Execution timing for
default transition path

jc_0712 “Check execution timing for
default transition path”

jc_0722: Local data definition in
parallel states

jc_0722 “Check scope of data in parallel
states”

jc_0797: Unconnected
transitions / states / connective
junctions

jc_0797 “Check for unconnected objects
in Stateflow Charts”

db_0137: States in state
machines

db_0137 “Check for state in state
machines”

jc_0721: Usage of parallel states jc_0721 “Check usage of parallel states”
db_0129: Stateflow transition
appearance

db_0129 “Check for Stateflow transition
appearance”

jc_0531: Default transition jc_0531 “Check default transition
placement in Stateflow charts”

3 Checking Systems Interactively

3-66

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0723: Prohibited direct
transition from external state to
child state

jc_0723 “Check usage of transitions to
external states”

jc_0751: Backtracking
prevention in state transition

jc_0751 “Check for unexpected
backtracking in state
transitions”

jc_0760: Starting point of
internal transition

jc_0760 “Check starting point of internal
transition in Stateflow”

jc_0763: Usage of multiple
internal transitions

jc_0763 “Check usage of internal
transitions in Stateflow states”

jc_0762: Prohibition of state
action and flow chart
combination

jc_0762 “Check prohibited combination
of state action and flow chart”

db_0132: Transitions in flow
charts

db_0132 “Check transitions in Stateflow
Flow charts”

jc_0773: Unconditional
transition of a flow chart

jc_0773 “Check usage of unconditional
transitions in flow charts”

jc_0775: Terminating junctions
in flow charts

jc_0775 “Check terminal junctions in
Stateflow”

jc_0738: Usage of Stateflow
comments

jc_0738 “Check usage of Stateflow
comments”

jc_0790: Action language of
Chart block

jc_0790 “Check Stateflow chart action
language”

jc_0702: Use of named Stateflow
parameters and constants

jc_0702 “Check usage of numeric literals
in Stateflow”

jm_0011: Pointers in Stateflow jm_0011 “Check for pointers in Stateflow
charts”

jc_0491: Reuse of Stateflow data jc_0491 Not checkable
jm_0012: Usage restrictions of
events and broadcasting events

jm_0012 “Check for usage of events and
broadcasting events in Stateflow
charts”

jc_0733: Order of state action
types

jc_0733 “Check order of state action
types”

jc_0734: Number of state action
types

jc_0734 “Check repetition of Action
types”

jc_0740: Limitation on use of
exit state action

jc_0740 “Check if state action type 'exit'
is used in the model”

jc_0741: Timing to update data
used in state chart transition
conditions

jc_0741 “Check updates to variables
used in state transition
conditions”

 Model Checks for MAB and JMAAB Compliance

3-67

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0772: Execution order and
transition conditions of
transition lines

jc_0772 “Check usage of transition
conditions in Stateflow
transitions”

jc_0753: Condition actions and
transition actions in Stateflow

jc_0753 “Check condition actions and
transition actions in Stateflow”

jc_0711: Division in Stateflow jc_0711 Not checkable
db_0127: Limitation on MATLAB
commands in Stateflow blocks

db_0127 “Check for MATLAB expressions
in Stateflow charts”

jc_0481: Use of hard equality
comparisons for floating point
numbers in Stateflow

jc_0481 “Check usage of floating-point
expressions in Stateflow charts”

na_0001: Standard usage of
Stateflow operators

na_0001 “Check Stateflow operators”

jc_0655: Prohibition of logical
value comparison in Stateflow

jc_0655 “Check prohibited comparison
operation of logical type
signals”

jc_0451: Use of unary minus on
unsigned integers

jc_0451 “Check usage of unary minus
operations in Stateflow charts”

jc_0802: Prohibited use of
implicit type casting in
Stateflow

jc_0802 “Check for implicit type casting
in Stateflow”

jc_0803: Passing values to
library functions

jc_0803 Not checkable

jc_0732: Distinction between
state names, data names, and
event names

jc_0732 “Check uniqueness of Stateflow
State and Data names”

jc_0730: Unique state name in
Stateflow blocks

jc_0730 “Check uniqueness of State
names”

jc_0731: State name format jc_0731 “Check usage of State names”
jc_0501: Format of entries in a
State block

jc_0501 “Check entry formatting in
State blocks in Stateflow charts”

jc_0736: Uniform indentations
in Stateflow blocks

jc_0736 “Check indentation of code in
Stateflow states”

jc_0739: Describing text inside
states

jc_0739 “Check for usage of text inside
states”

jc_0770: Position of transition
label

jc_0770 “Check placement of Label
String in Transitions”

jc_0771: Comment position in
transition labels

jc_0771 “Check position of comments in
transition labels”

3 Checking Systems Interactively

3-68

MAB Modeling Guideline

(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0752: Condition action in
transition label

jc_0752 “Check usage of parentheses in
Stateflow transitions”

jc_0774: Comments for through
transition

jc_0774 “Check for comments in
unconditional transitions”

jc_0511: Return values from a
graphical function

jc_0511 “Check return value
assignments in Stateflow
graphical functions”

jc_0804: Prohibited use of
recursive calls with graphical
functions

jc_0804 “Check usage of graphical
functions in Stateflow”

na_0042: Usage of Simulink
functions

na_0042 “Check usage of Simulink
function in Stateflow”

na_0039: Limitation on Simulink
functions in Chart blocks

na_0039 “Check use of Simulink in
Stateflow charts”

na_0018: Number of nested if/
else and case statement

No corresponding JMAAB
guideline

“Check nested conditions in
MATLAB Functions”

na_0025: MATLAB Function
header

No corresponding JMAAB
guideline

No check

na_0024: Shared data in
MATLAB functions

na_0024 “Check MATLAB code for global
variables”

na_0031: Definition of default
enumerated value

na_0031 “Check usage of enumerated
values”

na_0034: MATLAB Function
block input/output settings

na_0034 “Check input and output
settings of MATLAB Functions”

na_0016: Source lines of
MATLAB Functions

No corresponding JMAAB
guideline

“Check lines of code in MATLAB
Functions”

na_0017: Number of called
function levels

No corresponding JMAAB
guideline

“Check the number of function
calls in MATLAB Function
blocks”

na_0021: Strings in MATLAB
functions

na_0021 “Check usage of character
vector inside MATLAB Function
block”

na_0022: Recommended
patterns for Switch/Case
statements

No corresponding JMAAB
guideline

“Check usage of recommended
patterns for Switch/Case
statements”

jc_0801: Prohibited use of the /*
and */ comment symbols

jc_0801 “Check for use of C-style
comment symbols”

See Also

• “Run Model Advisor Checks and Review Results”

 Model Checks for MAB and JMAAB Compliance

3-69

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128/EN 50657 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems
• By Task > Modeling Standards for ISO 25119 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems
and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

This table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling”.

High Integrity Systems Modeling Checks
High Integrity System Model Check Applicable High-Integrity System Modeling

Guidelines
Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”
Check for inconsistent vector indexing methods “hisl_0021: Consistent vector indexing method”
Check usage of variant blocks “hisl_0023: Verification of variant blocks”
Check for root Inports with missing properties “hisl_0024: Inport interface definition”
Check usage of Relational Operator blocks “hisl_0017: Usage of blocks that compute

relational operators (2)”
Check relational comparisons on floating-point
signals

“hisl_0016: Usage of blocks that compute
relational operators”

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator block”
Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
Check usage of For and While Iterator
subsystems

“hisl_0007: Usage of For Iterator or While
Iterator subsystems”

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
Check usage of If blocks and If Action Subsystem
blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks”

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks”

3 Checking Systems Interactively

3-70

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related optimization settings for
logic signals

“hisl_0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)”

Check safety-related block reduction optimization
settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”

Check safety-related optimization settings for
application lifespan

“hisl_0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”

Check safety-related optimization settings for
data initialization

“hisl_0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”

Check safety-related optimization settings for
data type conversions

“hisl_0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values”

Check safety-related optimization settings for
division arithmetic exceptions

“hisl_0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”

Check safety-related code generation settings for
comments

“hisl_0038: Configuration Parameters > Code
Generation > Comments”

Check safety-related code generation interface
settings

“hisl_0039: Configuration Parameters > Code
Generation > Interface”

Check safety-related code generation settings for
code style

“hisl_0047: Configuration Parameters > Code
Generation > Code Style”

Check safety-related code generation identifier
settings

“hisl_0049: Configuration Parameters > Code
Generation > Identifiers”

Check usage of Abs blocks “hisl_0001: Usage of Abs block”
Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl_0002: Usage of remainder and reciprocal
operations”

Check usage of Math Function blocks (log and
log10 functions)

“hisl_0004: Usage of natural logarithm and base
10 logarithm operations”

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of input
interfaces”

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces”

Check state machine type of Stateflow charts “hisf_0001: State Machine Type”
Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf_0013: Usage of transition paths (crossing
parallel state boundaries)”

Check Stateflow charts for ordering of states and
transitions

“hisf_0002: User-specified state/transition
execution order”

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”

 Model Checks for High Integrity Systems Modeling

3-71

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check Stateflow charts for uniquely defined data
objects

“hisl_0061: Unique identifiers for clarity”

Check Stateflow charts for strong data typing “hisf_0015: Strong data typing (casting variables
and parameters in expressions)”

Check assignment operations in Stateflow charts “hisf_0065: Type cast operations in Stateflow to
improve code compliance”

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance”

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries”

Check MATLAB Function metrics “himl_0003: Complexity of user-defined MATLAB
Functions”

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”

Check safety-related model referencing settings “hisl_0037: Configuration Parameters > Model
Referencing”

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver”

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters > Solver >
Simulation time”

Check safety-related solver settings for solver
options

“hisl_0041: Configuration Parameters > Solver >
Solver options”

Check safety-related solver settings for tasking
and sample-time

“hisl_0042: Configuration Parameters > Solver >
Tasking and sample time options”

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time”

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”

Check safety-related diagnostic settings for data
used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”

Check safety-related diagnostic settings for data
store memory

“hisl_0013: Usage of data store blocks”

Check safety-related diagnostic settings for type
conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion”

Check safety-related diagnostic settings for signal
connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”

Check safety-related diagnostic settings for bus
connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”

3 Checking Systems Interactively

3-72

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility”

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization”

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving”

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow”

Check model object names “hisl_0032: Model object names”
Check for model elements that do not link to
requirements

“hisl_0070: Placement of requirement links in a
model”

Check for inappropriate use of transition paths “hisf_0014: Usage of transition paths (passing
through states)”

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
Check data types for blocks with index signals “hisl_0022: Data type selection for index signals”
Check model file name “hisl_0031: Model file names”
Check if/elseif/else patterns in MATLAB Function
blocks

“himl_0006: MATLAB code if / elseif / else
patterns”

Check switch statements in MATLAB Function
blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns”

Check global variables in graphical functions “hisl_0062: Global variables in graphical
functions”

Check for length of user-defined object names “hisl_0063: Length of user-defined object names
to improve MISRA C:2012 compliance”

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems”

Check usage of standardized MATLAB function
headers

“himl_0001: Usage of standardized MATLAB
function headers”

Check usage of relational operators in MATLAB
Function blocks

“himl_0008: MATLAB code relational operator
data types”

Check usage of logical operators and functions in
MATLAB Function blocks

“himl_0010: MATLAB code with logical operators
and functions”

Check type and size of conditional expressions “himl_0011: Data type and size of condition
expressions”

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”

 Model Checks for High Integrity Systems Modeling

3-73

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
“Check for divide-by-zero calculations” “hisl_0067: Protect against divide-by-zero

calculations”
Check data type of loop control variables “hisl_0102: Data type of loop control variables to

improve MISRA C:2012 compliance”
Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl_0020: Blocks not recommended for MISRA
C:2012 compliance”

Check safety-related optimization settings for
specified minimum and maximum values

“hisl_0056: Configuration Parameters > Code
Generation > Optimization > Optimize using the
specified minimum and maximum values”

“Check usage of remainder and reciprocal
operations”

“hisl_0002: Usage of remainder and reciprocal
operations”

“Check usage of square root operations” “hisl_0003: Usage of square root operations”
“Check usage of log and log10 operations” “hisl_0004: Usage of natural logarithm and base

10 logarithm operations”
“Check usage of Reciprocal Sqrt blocks” “hisl_0028: Usage of Reciprocal Square Root

blocks”
“Check safety-related settings for hardware
implementation”

“hisl_0071: Configuration Parameters >
Hardware Implementation >Inconsistent
hardware implementation settings”

“Check usage of recursions” hisf_0004: Protect against recursive function calls
to improve code compliance

“Check MATLAB functions not supported for code
generation”

“himl_0012: Usage of MATLAB functions for code
generation”

“Metrics for generated code complexity” “himl_0013: Limitation of built-in MATLAB
Function complexity”

“Check for parameter tunability ignored for
referenced models”

“hisl_0072: Usage of tunable parameters for
referenced models”

“Check usage of bit-shift operations” “hisl_0073: Usage of bit-shift operations”
“Check safety-related diagnostic settings for
variants”

“hisl_0074: Configuration Parameters >
Diagnostics > Modeling issues related to
variants”

“Check for disabled and parameterized library
links”

“hisl_0075: Usage of library links”

“Check for unreachable and dead code” “hisl_0101: Avoid operations that result in dead
logic to improve code compliance”

3 Checking Systems Interactively

3-74

Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119,
and EN 50128/EN 50657 Standard Compliance

You can check that your model or subsystem complies with selected aspects of the following
standards by running the Model Advisor:

• ISO 26262:2018 Road vehicles — Functional safety
• ISO 25119:2018 Tractors And Machinery For Agriculture And Forestry — Safety-Related Parts Of

Control Systems
• IEC 61508:2010 Functional Safety of Electrical/Electronic/Programmable Electronic Safety

Related Systems
• EN 50128:2011 Railway applications - Communication, Signalling and Processing Systems -

Software for Railway Control and Protection Systems
• EN 50657: 2017 Railways Applications. Rolling stock applications. Software on Board Rolling

Stock
• IEC 62304:2015 Medical Device Software – Software Life Cycle Processes
• MISRA C:2012 Guidelines for the Use of the C Language in Critical Systems

To check compliance with these standards, open the Model Advisor on page 3-4 and run the checks in
these folders.

• By Task > Modeling Standards for ISO 26262
• By Task > Modeling Standards for ISO 25119
• By Task > Modeling Standards for IEC 61508
• By Task > Modeling Standards for EN 50128/EN 50657
• By Task > Modeling Standards for IEC 62304

The table lists the IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 checks.

Subfolder Model Advisor Checks
N/A “Display configuration management data”

“Display model metrics and complexity report”
“Check for unconnected objects”

MISRA “Check for missing error ports for AUTOSAR receiver interfaces”
“Check for unsupported block names”
“Check bus object names that are used as bus element names”
“Check for equality and inequality operations on floating-point values”
“Check for bitwise operations on signed integers”
“Check integer word length”
“Check for missing const qualifiers in model functions”
“Check for recursive function calls”
“Check for switch case expressions without a default case”

Bug Reports “Display bug reports for IEC Certification Kit” (IEC Certification Kit)

 Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 Standard Compliance

3-75

Subfolder Model Advisor Checks
“Display bug reports for Simulink Check” (IEC Certification Kit)
“Display bug reports for Simulink Coverage” (IEC Certification Kit)
“Display bug reports for Requirements Toolbox” (IEC Certification Kit)
“Display bug reports for Simulink Design Verifier” (IEC Certification Kit)
“Display bug reports for Simulink Test” (IEC Certification Kit)
“Display bug reports for Embedded Coder” (IEC Certification Kit)
“Display bug reports for AUTOSAR Blockset” (IEC Certification Kit)
“Display bug reports for Simulink PLC Coder” (IEC Certification Kit)
“Display bug reports for HDL Coder” (IEC Certification Kit)
“Display bug reports for Polyspace Bug Finder” (IEC Certification Kit)
“Display bug reports for Polyspace Bug Finder Server” (IEC Certification Kit)
“Display bug reports for Polyspace Code Prover” (IEC Certification Kit)
“Display bug reports for Polyspace Code Prover Server” (IEC Certification Kit)

Following are the High-Integrity System Modeling checks that are applicable for the IEC 61508, IEC
62304, ISO 26262, ISO 25119, EN 50128, and EN 50657 standards.

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128/EN 50657 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems
• By Task > Modeling Standards for ISO 25119 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems
and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

This table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling”.

3 Checking Systems Interactively

3-76

https://www.rtca.org/
https://www.rtca.org/

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”
Check for inconsistent vector indexing methods “hisl_0021: Consistent vector indexing method”
Check usage of variant blocks “hisl_0023: Verification of variant blocks”
Check for root Inports with missing properties “hisl_0024: Inport interface definition”
Check usage of Relational Operator blocks “hisl_0017: Usage of blocks that compute

relational operators (2)”
Check relational comparisons on floating-point
signals

“hisl_0016: Usage of blocks that compute
relational operators”

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator block”
Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
Check usage of For and While Iterator
subsystems

“hisl_0007: Usage of For Iterator or While
Iterator subsystems”

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
Check usage of If blocks and If Action Subsystem
blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks”

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks”

Check safety-related optimization settings for
logic signals

“hisl_0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)”

Check safety-related block reduction optimization
settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”

Check safety-related optimization settings for
application lifespan

“hisl_0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”

Check safety-related optimization settings for
data initialization

“hisl_0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”

Check safety-related optimization settings for
data type conversions

“hisl_0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values”

Check safety-related optimization settings for
division arithmetic exceptions

“hisl_0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”

Check safety-related code generation settings for
comments

“hisl_0038: Configuration Parameters > Code
Generation > Comments”

Check safety-related code generation interface
settings

“hisl_0039: Configuration Parameters > Code
Generation > Interface”

Check safety-related code generation settings for
code style

“hisl_0047: Configuration Parameters > Code
Generation > Code Style”

 Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 Standard Compliance

3-77

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related code generation identifier
settings

“hisl_0049: Configuration Parameters > Code
Generation > Identifiers”

Check usage of Abs blocks “hisl_0001: Usage of Abs block”
Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl_0002: Usage of remainder and reciprocal
operations”

Check usage of Math Function blocks (log and
log10 functions)

“hisl_0004: Usage of natural logarithm and base
10 logarithm operations”

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of input
interfaces”

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces”

Check state machine type of Stateflow charts “hisf_0001: State Machine Type”
Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf_0013: Usage of transition paths (crossing
parallel state boundaries)”

Check Stateflow charts for ordering of states and
transitions

“hisf_0002: User-specified state/transition
execution order”

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”
Check Stateflow charts for uniquely defined data
objects

“hisl_0061: Unique identifiers for clarity”

Check Stateflow charts for strong data typing “hisf_0015: Strong data typing (casting variables
and parameters in expressions)”

Check assignment operations in Stateflow charts “hisf_0065: Type cast operations in Stateflow to
improve code compliance”

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance”

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries”

Check MATLAB Function metrics “himl_0003: Complexity of user-defined MATLAB
Functions”

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”

Check safety-related model referencing settings “hisl_0037: Configuration Parameters > Model
Referencing”

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver”

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters > Solver >
Simulation time”

3 Checking Systems Interactively

3-78

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related solver settings for solver
options

“hisl_0041: Configuration Parameters > Solver >
Solver options”

Check safety-related solver settings for tasking
and sample-time

“hisl_0042: Configuration Parameters > Solver >
Tasking and sample time options”

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time”

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”

Check safety-related diagnostic settings for data
used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”

Check safety-related diagnostic settings for data
store memory

“hisl_0013: Usage of data store blocks”

Check safety-related diagnostic settings for type
conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion”

Check safety-related diagnostic settings for signal
connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”

Check safety-related diagnostic settings for bus
connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility”

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization”

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving”

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow”

Check model object names “hisl_0032: Model object names”
Check for model elements that do not link to
requirements

“hisl_0070: Placement of requirement links in a
model”

Check for inappropriate use of transition paths “hisf_0014: Usage of transition paths (passing
through states)”

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
Check data types for blocks with index signals “hisl_0022: Data type selection for index signals”
Check model file name “hisl_0031: Model file names”

 Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 Standard Compliance

3-79

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check if/elseif/else patterns in MATLAB Function
blocks

“himl_0006: MATLAB code if / elseif / else
patterns”

Check switch statements in MATLAB Function
blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns”

Check global variables in graphical functions “hisl_0062: Global variables in graphical
functions”

Check for length of user-defined object names “hisl_0063: Length of user-defined object names
to improve MISRA C:2012 compliance”

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems”

Check usage of standardized MATLAB function
headers

“himl_0001: Usage of standardized MATLAB
function headers”

Check usage of relational operators in MATLAB
Function blocks

“himl_0008: MATLAB code relational operator
data types”

Check usage of logical operators and functions in
MATLAB Function blocks

“himl_0010: MATLAB code with logical operators
and functions”

Check type and size of conditional expressions “himl_0011: Data type and size of condition
expressions”

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”
Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
“Check for divide-by-zero calculations” “hisl_0067: Protect against divide-by-zero

calculations”
Check data type of loop control variables “hisl_0102: Data type of loop control variables to

improve MISRA C:2012 compliance”
Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl_0020: Blocks not recommended for MISRA
C:2012 compliance”

Check safety-related optimization settings for
specified minimum and maximum values

“hisl_0056: Configuration Parameters > Code
Generation > Optimization > Optimize using the
specified minimum and maximum values”

“Check usage of remainder and reciprocal
operations”

“hisl_0002: Usage of remainder and reciprocal
operations”

“Check usage of square root operations” “hisl_0003: Usage of square root operations”
“Check usage of log and log10 operations” “hisl_0004: Usage of natural logarithm and base

10 logarithm operations”

3 Checking Systems Interactively

3-80

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

“Check usage of Reciprocal Sqrt blocks” “hisl_0028: Usage of Reciprocal Square Root
blocks”

“Check safety-related settings for hardware
implementation”

“hisl_0071: Configuration Parameters >
Hardware Implementation >Inconsistent
hardware implementation settings”

“Check usage of recursions” hisf_0004: Protect against recursive function calls
to improve code compliance

“Check MATLAB functions not supported for code
generation”

“himl_0012: Usage of MATLAB functions for code
generation”

“Metrics for generated code complexity” “himl_0013: Limitation of built-in MATLAB
Function complexity”

“Check for parameter tunability ignored for
referenced models”

“hisl_0072: Usage of tunable parameters for
referenced models”

“Check usage of bit-shift operations” “hisl_0073: Usage of bit-shift operations”
“Check safety-related diagnostic settings for
variants”

“hisl_0074: Configuration Parameters >
Diagnostics > Modeling issues related to
variants”

“Check for disabled and parameterized library
links”

“hisl_0075: Usage of library links”

“Check for unreachable and dead code” “hisl_0101: Avoid operations that result in dead
logic to improve code compliance”

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-4

 Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 Standard Compliance

3-81

Model Checks for MISRA C:2012 Compliance
To check that your model or subsystem has a likelihood of generating MISRA C:2012 compliant code,
open the Model Advisor on page 3-4 and run the checks in By Task > Modeling Guidelines for
MISRA C:2012:

• “Check usage of Assignment blocks”
• “Check for blocks not recommended for MISRA C:2012”
• “Check for blocks not recommended for C/C++ production code deployment”
• “Check for unsupported block names”
• “Check configuration parameters for MISRA C:2012”
• “Check for equality and inequality operations on floating-point values”
• “Check for bitwise operations on signed integers”
• “Check for recursive function calls”
• “Check for switch case expressions without a default case”
• “Check for missing error ports for AUTOSAR receiver interfaces”
• “Check for missing const qualifiers in model functions”
• “Check integer word length”
• “Check bus object names that are used as bus element names”

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-4

3 Checking Systems Interactively

3-82

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS
17961 Standards)

To check that your code complies with the CERT C, CWE, and ISO/IEC TS 17961 (Embedded Coder)
secure coding standards, open the Model Advisor on page 3-4 and run the checks in By Task >
Modeling Guidelines for Secure Coding (CERT C, CWE, ISO/IEC TS 17961):

• “Check configuration parameters for secure coding standards”
• “Check for blocks not recommended for C/C++ production code deployment”
• “Check for blocks not recommended for secure coding standards”
• “Check usage of Assignment blocks”
• “Check for switch case expressions without a default case”
• “Check for bitwise operations on signed integers”
• “Check for equality and inequality operations on floating-point values”
• “Check integer word length”
• “Detect Dead Logic”
• “Detect Integer Overflow”
• “Detect Division by Zero”
• “Detect Out Of Bound Array Access”
• “Detect Specified Minimum and Maximum Value Violations”

From R2021b, these Model Advisor checks are now compliant with CERT C modelling guidelines:

• “Check configuration parameters for MISRA C:2012”
• Check usage of Abs blocks
• “Check usage of remainder and reciprocal operations”
• “Check usage of square root operations”
• Check usage of While Iterator blocks
• Check for blocks not recommended for C/C++ production code deployment
• Check data types for blocks with index signals
• “Check usage of Reciprocal Sqrt blocks”
• Check global variables in graphical functions
• “Check usage of bit-shift operations”
• Check safety-related optimization settings for data type conversions
• Check safety-related optimization settings for division arithmetic exceptions
• Check model file name
• Check model object names

 Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)

3-83

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-4

3 Checking Systems Interactively

3-84

Model Checks for Requirements Links
To check that every requirements link in your model has a valid target in a requirements document,
from the Simulink Toolstrip, open the Requirements app. Click Check Consistency to run the
Requirements Consistency Checking checks in the Model Advisor.

In the Model Advisor, the requirements consistency checks are available in:

• By Product > Requirements Toolbox > Requirements Consistency
• By Task > Requirements Consistency Checking

For more information about these Model Advisor checks, see “Requirements Consistency Checks”
(Requirements Toolbox)

When modeling for high-integrity systems, to check that model elements link to requirement
documents, run Check for model elements that do not link to requirements.

See Also

Related Examples
• “Validate Requirements Links in a Model” (Requirements Toolbox)
• “Run Model Advisor Checks and Review Results” on page 3-4
• “High-Integrity System Modeling”

 Model Checks for Requirements Links

3-85

Replace Exact Clones with Subsystem Reference
Exact clones are modeling patterns that have identical block types, connections, and parameter
values. The Clone Detector identifies these clones across referenced model boundaries. You can then
reuse components by replacing exact clones with library links and Subsystem Reference blocks. To
replace exact clones with library links, see “Enable Component Reuse by Using Clone Detection” on
page 3-33. This example demonstrates how to replace subsystem clones with “Subsystem Reference”
blocks.

Identify Exact Clones
1 Open the model ex_clone_detection. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection

2 Save the model to your working folder. The model must be open to access the app.
3 On the Apps tab, click Clone Detector. Alternatively, on the MATLAB command line enter:

clonedetection("ex_clone_detection")

4 The app opens the Clone Detector tab. This example takes you through each section.

3 Checking Systems Interactively

3-86

Set Up Panes for Clone Detection

The app displays information on three panes. To open the panes, use the View menu. The panes are:

• Help. Select to access a help pane that contains an overview of the clone detection workflow.
• Results. Select to view the Clone Detection Results and Actions pane.
• Properties. Select to view the Detected Clone Properties pane.

Set the Parameters for Clone Detection

You can set up the parameters for clone detection by using the Settings drop-down menu.

• Select Replace Exact Clones with Subsystem References.
• Click Exclude Components to access the Exclude model references, Exclude library Links,

and Exclude inactive and commented out regions options. Enabling the Exclude inactive
and commented out regions option, leads to exact clone SS1 not being identified because of
Variant Source block in the model. For more information, see “Exclude Components from Clone
Detection”. Keep the Exclude inactive and commented out regions option cleared.

• Click Detect Clones Across Model to enable detect clones anywhere across the model. You can
choose the values of Minimum Region Size and Minimum Clone Group Size to detect the
clones with these matching blocks. The default size is set to 2.

Identify Clones in the Model

1 Click Find Clones to identify clones.
2 The color of subsystems SS1 and SS4 changes to red to indicate that they are exact clones.

Analyze the Clone Detection Results

After identifying clones, you can analyze the results and make changes to the model as necessary. To
analyze the results:

1 In the Clone Detection Results and Actions panel, on the Clone Results tab, a clone group
Exact Clone Group 1 is displayed.

2 Click the > symbol next to Exact Clone Group 1 to see all of the subsystems that are exact
clones and the number of blocks per clone.

3 In the Clone Detection Results and Actions pane, click the Logs tab. Click the hyperlink on
the Logs pane.

A new window opens the clone detection results with an integrated report on the identified
clones, the types of clones, the parameters of detection, and the exclusions in the clone
detection.

4 Click the Model Hierarchy tab and expand ex_clone_detection. Click the hyperlinks to
highlight the subsystems that are present in the model.

 Replace Exact Clones with Subsystem Reference

3-87

5 In the Detected Clone Properties pane, in the Refactor Benefits section, you can consider the
percentage of exact clones present.

Refactoring the model reduces 6.4516% of the model reuse.

Replace Clones
1 In the Clone Detector tab, click Replace Clones. The exact clones are replaced with Subsystem

Reference blocks. You can see the .slx files of the subsystem references in your working folder.
2 You can restore the model to its original configuration in the Clone Detection Results and

Actions pane. Open the Logs tab, click the hyperlink for the version you want to restore, and
click Restore.

Check the Equivalency of the Model
If you have a Simulink Test, you can check equivalence of the new model is to the original model in
the Clone Detection tab by clicking Check Equivalency.

3 Checking Systems Interactively

3-88

See Also

Related Examples
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink Coder)
• Clone Detector
• “Enable Component Reuse by Using Clone Detection” on page 3-33

 Replace Exact Clones with Subsystem Reference

3-89

Detect and Replace Subsystem Clones Programmatically
Clones are modeling patterns that have identical block types and connections. You can refactor your
model by creating library blocks from subsystem clones and replacing the clones with links to those
library blocks, which enable you to reuse components. For more information about clones, see Enable
Component Reuse by Using Clone Detection on page 3-33.

Programmatically checking for clones during the model submission process helps you identify
opportunities to reuse subsystems before the model is deployed into the main product branch. When
updating your model, you can use the Clone Detector app and clone detector API simultaneously.
When you use the clone detector API, the detected clones appear in the Simulink Editor.

This example shows how to use the clone detection APIs to identify and replace clones in a single
model by creating a library file with subsystem blocks and replacing the clones with links to blocks in
the library file.

In this example, you learn how to use:

• Simulink.CloneDetection.findClones to find clones in a model.
• Simulink.CloneDetection.replaceClones to replace clones in a model.
• Simulink.CloneDetection.checkEquivalency to check the equivalency of the updated model with

the original model.
• Simulink.CloneDetection.Settings to add conditions to the findClones operation.
• Simulink.CloneDetection.ReplacementConfig to add conditions to the replaceClones operation.

Identify Clones in a Model
1 Open the model ex_clone_detection_B. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection_B

Save the model in the current working directory.
2 To find subsystem clones, use the function Simulink.CloneDetection.findClones(). This

function creates an object called cloneResults.
 cloneResults = Simulink.CloneDetection.findClones('ex_clone_detection_B')

cloneResults =
 Results with properties:
 Clones: [1×1 struct]
 ExceptionLog: ''

The cloneResults object has Clones, which is a structure with two fields, Summary and
CloneGroups.

 cloneResults.Clones

ans =
 struct with fields:
 Summary: [1×1 struct]
 CloneGroups: [1×2 struct]

3 View the Summary field.

3 Checking Systems Interactively

3-90

 cloneResults.Clones.Summary

ans =
 struct with fields:
 CloneGroups: 2
 SimilarClones: 5
 ExactClones: 0
 Clones: 5
 PotentialReusePercentage: [1×1 struct]

In this example, the model has two CloneGroups with matching subsystem patterns, five
SimilarClones, and zero ExactClones, and the five subsystem Clones.

4 View the CloneGroups field.

 cloneResults.Clones.CloneGroups

ans =
 1×2 struct array with fields:
 Name
 Summary
 CloneList

The model in this example returns an array of two CloneGroups. Each array includes the Name,
Summary and CloneList.

5 View the details of first clone group.

 cloneResults.Clones.CloneGroups(1)

ans =
 struct with fields:
 Name: 'Similar Clone Group 1'
 Summary: [1×1 struct]
 CloneList: {3×1 cell}

6 View the Summary.

 cloneResults.Clones.CloneGroups(1).Summary

ans =
 struct with fields:
 ParameterDifferences: [1×1 struct]
 Clones: 3
 BlocksPerClone: 8
 CloneType: 'Similar'
 BlockDifference: 1

7 View the CloneList of the first CloneGroup.

 cloneResults.Clones.CloneGroups(1).CloneList

ans =
 3×1 cell array
 {'ex_clone_detection_B/Subsystem1'}
 {'ex_clone_detection_B/Subsystem2'}
 {'ex_clone_detection_B/Subsystem3'}

Similarly, You can find the results of other CloneGroups using the above steps.

 Detect and Replace Subsystem Clones Programmatically

3-91

Replace Clones in a Model
1 To replace clones in a model, use the function

Simulink.CloneDetection.replaceClones(). This function uses the cloneResults object
from the findClones function.
 cloneReplacementResults = Simulink.CloneDetection.replaceClones(cloneResults)

cloneReplacementResults =
 ReplacementResults with properties:
 ReplacedClones: [1×5 struct]
 ExcludedClones: {}

The cloneReplacementResults object includes two properties, ReplacedClones and
ExcludedClones.

2 View the contents of ReplacedClones property.

cloneReplacementResults.ReplacedClones

ans =
 1×5 struct array with fields:
 Name
 ReferenceSubsystem

The 1-by-5 array indicates that the function replaced five subsystem clones in the model.
3 View the list of replaced subsystem clones.

 struct2table(cloneReplacementResults.ReplacedClones)

ans =
 5×2 table
 Name ReferenceSubsystem
 ___________________________________ _____________________________
 {'ex_clone_detection_B/Subsystem1'} {'newLibraryFile/Subsystem1'}
 {'ex_clone_detection_B/Subsystem2'} {'newLibraryFile/Subsystem1'}
 {'ex_clone_detection_B/Subsystem3'} {'newLibraryFile/Subsystem1'}
 {'ex_clone_detection_B/SS3' } {'newLibraryFile/SS1' }
 {'ex_clone_detection_B/SS4' } {'newLibraryFile/SS1' }

Identify Clones Using Subsystem Reference Blocks
1 Save the model and library file in the current working directory.

ex_clone_detection_E
libname

2 Use the Simulink.CloneDetection.Settings() class to create an object that specifies
certain conditions for finding clones in a model.

 cloneDetectionSettings = Simulink.CloneDetection.Settings()

cloneDetectionSettings =

 Settings with properties:
 IgnoreSignalName: 0
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0
 ExcludeInactiveRegions: 0

3 Checking Systems Interactively

3-92

 SelectedSystemBoundary: ''
 DetectClonesAcrossModel: 0
 FindClonesRecursivelyInFolders: 1
 ParamDifferenceThreshold: 50
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {}
 Folders: {}

3 Set the ParamDifferenceThreshold parameter. This parameter specifies the number of
differences that subsystems must have to be considered clones.

 cloneDetectionSettings.ParamDifferenceThreshold = 0

cloneDetectionSettings =

 Settings with properties:
 IgnoreSignalName: 0
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0
 ExcludeInactiveRegions: 0
 SelectedSystemBoundary: ''
 DetectClonesAcrossModel: 0
 FindClonesRecursivelyInFolders: 1
 ParamDifferenceThreshold: 0
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {}
 Folders: {}

A value of 0 indicates the subsystems must be identical.
4 Add a reference library file to use to match the clone patterns in the cloneDetectionSettings

object. In this example, SSL1 and SSL2 are subsystem patterns in the library libName.
cloneDetectionSettings = cloneDetectionSettings.addLibraries('libname')

cloneDetectionSettings =

 Settings with properties:
 IgnoreSignalName: 1
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0
 ExcludeInactiveRegions: 0
 SelectedSystemBoundary: ''
 DetectClonesAcrossModel: 0
 FindClonesRecursivelyInFolders: 1
 ParamDifferenceThreshold: 50
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {'C:\Users\Examples\libname.slx'}
 Folders: {}

5 To find clones, execute the function Simulink.CloneDetection.findClones() using the
model name and cloneDetectionSettings object.
 cloneResults = Simulink.CloneDetection.findClones('ex_clone_detection_E', cloneDetectionSettings)

cloneResults =
 Results with properties:
 Clones: [1×1 struct]

 cloneResults.Clones.Summary

ans =
 struct with fields:

 Detect and Replace Subsystem Clones Programmatically

3-93

 CloneGroups: 2
 SimilarClones: 5
 ExactClones: 0
 Clones: 5
 PotentialReusePercentage: [1×1 struct]

In this example, the model has two CloneGroups, five SimilarClones, zero ExactClones,
and five subsystem Clones.

6 View the details of first CloneGroup.

 cloneResults.Clones.CloneGroups(1)

ans =
 struct with fields:
 Name: 'libname/SSL1'
 Summary: [1×1 struct]
 CloneList: {3×1 cell}

Replace Clones with Conditions
1 1. To specify conditions for replaceClones function, create a handle using the

Simulink.CloneDetection.ReplacementConfig() class:

 cloneReplacementConfig = Simulink.CloneDetection.ReplacementConfig()

cloneReplacementConfig =
 ReplacementConfig with properties:
 LibraryNameToAddSubsystemsTo: 'newLibraryFile'
 IgnoredClones: {}

2 Add subsystems to the IgnoredClones list. In this example, ignore Subsystem1 to avoid
replacing it with a clone.
cloneReplacementConfig.addCloneToIgnoreList('ex_clone_detection_E/Subsystem1')

ans =
 ReplacementConfig with properties:
 LibraryNameToAddSubsystemsTo: 'newLibraryFile'
 IgnoredClones: {'ex_clone_detection_E/Subsystem1'}

3 To replace clones, use the replaceClones function with cloneResults and
cloneReplacementConfig as the input arguments.
cloneReplacementResults = Simulink.CloneDetection.replaceClones(cloneResults, cloneReplacementConfig)

cloneReplacementResults =
 ReplacementResults with properties:
 ReplacedClones: [1×4 struct]
 ExcludedClones: [1×1 struct]

4 View the ReplacedClones property.

struct2table(cloneReplacementResults.ReplacedClones)

ans =
 4×2 table
 Name ReferenceSubsystem
 ___________________________________ __________________
 {'ex_clone_detection_E/SS3' } {'libname/SSL1'}
 {'ex_clone_detection_E/SS4' } {'libname/SSL1'}

3 Checking Systems Interactively

3-94

 {'ex_clone_detection_E/Subsystem1'} {'libname/SSL2'}
 {'ex_clone_detection_E/Subsystem2'} {'libname/SSL2'}

The SSL1 and SSL2 Reference Subsystem blocks from the reference library replaced the
subsystem clones in the model.

5 View the ExcludedClones property.

struct2table(cloneReplacementResults.ExcludedClones)

ans =
 1×2 table
 Name ReferenceSubsystem
 ___________________________________ __________________
 {'ex_clone_detection_E/Subsystem1'} {'unselected'}

Check the Equivalency of the Model
You can check if the updated model is equivalent with the original model by using the
Simulink.CloneDetection.checkEquivalency() function. This function uses Simulink Test
Manager to compare the simulation results of the saved original model with the updated model and
saves the results in the checkEquiResults handle.

 checkEquiResults = Simulink.CloneDetection.checkEquivalency(cloneReplacementResults)

[21-Dec-2020 16:35:13] Running simulations...
[21-Dec-2020 16:35:32] Completed 1 of 2 simulation runs
[21-Dec-2020 16:35:33] Completed 2 of 2 simulation runs

checkEquiResults =
 EquivalencyCheckResults with properties:
 List: [1×1 struct]

View the check equivalence results.

 checkEquiResults.List

ans =
 struct with fields:
 IsEquivalencyCheckPassed: 1
 OriginalModel: 'm2m_ex_clone_detection_E/snapshot_2020_12_21_16_35_06_ex_clone_detection_E.slx'
 UpdatedModel: 'ex_clone_detection_E.slx'

The property IsEquivalencyCheckPassed is 1, which suggests that the models are equivalent. The
OriginalModel and UpdatedModel properties show which models the function checked.

See Also

Related Examples
• Clone Detector
• “Enable Component Reuse by Using Clone Detection” on page 3-33

 Detect and Replace Subsystem Clones Programmatically

3-95

Find Clones Across the Model
Clones are modeling patterns that have identical block types and connections. You can refactor your
model by creating library blocks from these clone patterns and replacing the clones with links to the
library blocks, which enable you to reuse the components. For more information about clones, see
Enable Component Reuse by Using Clone Detection on page 3-33.

You can search for clones in a subsystem or anywhere across the model.

• Subsystem clones: Identifies clones only in a subsystems.
• Clones across model: Identifies clones anywhere across the model.

This example shows how to use the Clone Detector app and APIs to identify clones anywhere across
the model, and then replace them with links to library blocks.

Identify Clones by Using the App
1 Open the model mClonesAnywhereSimilar. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
mClonesAnywhereSimilar

2 Save the model in the current working directory.
3 On the Apps tab, click Clone Detector. Alternatively, at the MATLAB command line, enter:

clonedetection("mClonesAnywhereSimilar")
4 To set up the parameters for clone detection, click Settings. Under Clone anywhere settings,

click Detect Clones Across Model.

3 Checking Systems Interactively

3-96

Minimum Region Size and Minimum Clone Group Size are set to 2 by default. The
Minimum Region Size parameter represents the minimum blocks needed per clone region and
the Minimum Clone Group Size parameter represents the minimum clone occurrences needed
to define it as a clone group.

5 Click Find Clones to identify clones.
6 The app highlights the clones. Exact clones are highlighted in red and similar clones are

highlighted in blue.

The clones highlighted in this example include clones identified in and outside of subsystems and
a Simulink block connected to a subsystem.

7 Click Replace Clones.

The app refactors the model and replaces the clones with links to the newLibraryFile library
file in your working directory. The app replaces the Simulink clone blocks outside of the
subsystems with linked Subsystem blocks.

Identify Clones Programmatically
1 Use the Simulink.CloneDetection.Settings class to create an object.

 cloneDetectionSettings = Simulink.CloneDetection.Settings()

 cloneDetectionSettings =
 IgnoreSignalName: 0
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0

 Find Clones Across the Model

3-97

 FindClonesRecursivelyInFolders: 1
 ParamDifferenceThreshold: 50
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {}
 Folders: {}
 DetectClonesAcrossModel: 0
 ExcludeInactiveRegions: 0

2 To search for clones across the model, set DetectClonesAcrossModel to 1.

cloneDetectionSettings.DetectClonesAcrossModel = 1

cloneDetectionSettings =

 IgnoreSignalName: 0
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0
 SelectedSystemBoundary: []
 FindClonesRecursivelyInFolders: 1
 ParamDifferenceThreshold: 50
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {}
 Folders: {}
 DetectClonesAcrossModel: 1
 ExcludeInactiveRegions: 0
 MinimumRegionSize: 2
 MinimumCloneGroupSize: 2

MinimumRegionSize and MinimumCloneGroupSize are set to 2 by default. You can change
their values.

3 To find clones, execute the function Simulink.CloneDetection.findClones using the
cloneDetectionSettings object.
cloneResults = Simulink.CloneDetection.findClones('mClonesAnywhereSimilar',cloneDetectionSettings)

cloneResults =

 Clones: [1×1 struct]
 ExceptionLog: ''

cloneResults.Clones =

 Results with properties:

 Summary: [1×1 struct]
 CloneGroups: [1×2 struct]

For more details on the clone detection APIs, see “Detect and Replace Subsystem Clones
Programmatically” on page 3-90.

See Also

Related Examples
• Simulink.CloneDetection.findClones
• Simulink.CloneDetection.Settings

3 Checking Systems Interactively

3-98

Detect Clones Programmatically on Multiple Models Across
Different Folders

This example shows how to programmatically detect clones across multiple models located in
different folders. For more information about the clone detection APIs, see “Detect and Replace
Subsystem Clones Programmatically” on page 3-90.

This example demonstrates how to use the clone detection APIs to identify clones in six Simulink®
models present in a folder. Replacement of clones is not possible using this example workflow. To
replace clones programmatically in multiple models, see “Detect and Replace Clones
Programmatically in a Loop on Multiple Models” on page 3-102.

1. At the MATLAB® command line, enter:

 addpath(fullfile(docroot,'toolbox','simulink','examples'))
 ex_clone_detection_A
 ex_clone_detection_B
 ex_clone_detection_C
 ex_clone_detection_D
 ex_clone_detection_E
 ex_clone_detection_F

Save the models to a writeable folder.

2. Use the Simulink.CloneDetection.Settings class to create an object.

 cloneDetectionSettings = Simulink.CloneDetection.Settings();

3. Add the path of the folder with the models to the cloneDetectionSettings object.

 cloneDetectionSettings.Folders = {'D:\models'}

cloneDetectionSettings =

 Settings with properties:

 IgnoreSignalName: 0
 IgnoreBlockProperty: 0
 ExcludeModelReferences: 0
 ExcludeLibraryLinks: 0
 ParamDifferenceThreshold: 50
 ReplaceExactClonesWithSubsystemReference: 0
 Libraries: {}
 Folders: {'D:\models'}
 DetectClonesAcrossModel: 0
 ExcludeInactiveRegions: 0
 FindClonesRecursivelyInFolders: 1

4. To find clones, execute the function Simulink.CloneDetection.findClones using the
cloneDetectionSettings object.

 cloneResults = Simulink.CloneDetection.findClones(cloneDetectionSettings)

cloneResults =

 Detect Clones Programmatically on Multiple Models Across Different Folders

3-99

 Results with properties:

 Clones: [1×1 struct]
 ExceptionLog: {}

The cloneResults is an object of Simulink.CloneDetection.Results class which has two
properties, Clones and ExceptionLog.

5. View the Clones.Summary field.

 cloneResults.Clones.Summary

ans =

 struct with fields:

 CloneGroups: 4
 SimilarClones: 18
 ExactClones: 8
 Clones: 26
 PotentialReusePercentage: [1×1 struct]

In this example, the models have four different clone groups with matching subsystem patterns,
eighteen similar clones, and eight exact clones, and the twenty-six subsystem clones.

5. View the details of first clone group.

 cloneResults.Clones.CloneGroups(1)

ans =

 struct with fields:

 Name: 'Exact Clone Group 1'
 Summary: [1×1 struct]
 CloneList: {5×1 cell}

6. View the summary of first clone group.

 cloneResults.Clones.CloneGroups(1).Summary

ans =

 struct with fields:

 ParameterDifferences: [1×1 struct]
 Clones: 5
 BlocksPerClone: 5
 CloneType: 'Exact'
 BlockDifference: 0

3 Checking Systems Interactively

3-100

7. View the clone list of the first clone group.

 cloneResults.Clones.CloneGroups(1).CloneList

ans =

 5×1 cell array

 {'ex_clone_detection_A/Subsystem'}
 {'ex_clone_detection_B/Subsystem'}
 {'ex_clone_detection_C/Subsystem'}
 {'ex_clone_detection_D/Subsystem'}
 {'ex_clone_detection_F/Subsystem'}

Similarly, you can find the results of other clone groups using the above steps.

See Also

Related Examples
• Clone Detector
• “Enable Component Reuse by Using Clone Detection” on page 3-33
• “Detect and Replace Subsystem Clones Programmatically” on page 3-90

 Detect Clones Programmatically on Multiple Models Across Different Folders

3-101

Detect and Replace Clones Programmatically in a Loop on
Multiple Models

This example shows how to programmatically detect and replace clones on a multiple models in a
loop by operating on models individually. For more information about Clone Detection APIs, see
“Detect and Replace Subsystem Clones Programmatically” on page 3-90.

This example shows how to detect and replace clones programmatically for five Simulink® models
using the library file TestLib_1 as a subsystem reference to replace clones.

1. At the MATLAB® command line, enter:

 addpath(fullfile(docroot,'toolbox','simulink','examples'))
 ex_clone_detection_A
 ex_clone_detection_B
 ex_clone_detection_C
 ex_clone_detection_E
 ex_clone_detection_F
 TestLib_1
Save the models and library file in the current working directory.

2. Create an array to add the models to:

 modelList = {};

3. Add the models to the modelList array:

 modelList{end+1,1} = 'ex_clone_detection_A';
 modelList{end+1,1} = 'ex_clone_detection_B';
 modelList{end+1,1} = 'ex_clone_detection_C';
 modelList{end+1,1} = 'ex_clone_detection_F';

4. Define containers to store Results, ReplacementResults and equivalencyCheck object for
the models.

 cloneResultsStorage = containers.Map();
 cloneReplacementStorage = containers.Map();
 equivalencyCheckStorage = containers.Map();

5. Add the library file to the cloneDetectionSettings object created from Settings class.

 libName = 'TestLib_1';
 cloneDetectionSettings = Simulink.CloneDetection.Settings();
 cloneDetectionSettings = cloneDetectionSettings.addLibraries(libName);

6. Use a loop to cycle through the models using the Simulink.CloneDetection.findClones,
Simulink.CloneDetection.replaceClones, and
Simulink.CloneDetection.checkEquivalency functions.

 for modelIndex = 1:length(modelList)
 modelName = modelList{modelIndex};
 try
 cloneResults = Simulink.CloneDetection.findClones(modelName, cloneDetectionSettings);
 cloneResultsStorage(modelName) = cloneResults;
 cloneReplacementResults = Simulink.CloneDetection.replaceClones(cloneResults);
 cloneReplacementStorage(modelName) = cloneReplacementResults;

3 Checking Systems Interactively

3-102

 equivalencyCheckResults = Simulink.CloneDetection.checkEquivalency(cloneReplacementResults);
 equivalencyCheckStorage(modelName) = equivalencyCheckResults;
 catch exception
 end
 end

You can access the results of cloneResultsStorage, cloneReplacementStorage, and
equivalencyCheckStorage objects for individual models. For more details, see “Detect and
Replace Subsystem Clones Programmatically” on page 3-90.

See Also

Related Examples
• Clone Detector
• “Enable Component Reuse by Using Clone Detection” on page 3-33
• “Detect Clones Programmatically on Multiple Models Across Different Folders” on page 3-99

 Detect and Replace Clones Programmatically in a Loop on Multiple Models

3-103

Running Clone Detection Custom Script in a Project
This example shows how to run a custom script for detecting clones on the set of Simulink® model
files managed in a project. Creating a custom script would help to organize and automate the large
modeling projects. For more information on setting up a custom task, see “Run Custom Tasks with a
Project”.

This example shows how to create and run a custom script to automate the clone detection across all
the models in a Simulink project. For more information on clone detection, see “Enable Component
Reuse by Using Clone Detection” on page 3-33.

This example uses the Airframe project to demonstrate the working of clone detection across multiple
models.

1. Open the Airframe project and use currentProject to get a project object.

 sldemo_slproject_airframe;
 project = currentProject;

Building with 'Microsoft Visual C++ 2017 (C)'.
MEX completed successfully.

2. Use the Simulink.CloneDetection.Settings class to create an object for find clones
operation. Add the path of the RootFolder to cloneDetectionSettings object.

 cloneDetectionSettings = Simulink.CloneDetection.Settings();
 cloneDetectionSettings.Folders = project.RootFolder;

3. To find clones, execute the function Simulink.CloneDetection.findClones using the
cloneDetectionSettings object.

 cloneResults = Simulink.CloneDetection.findClones(cloneDetectionSettings);

4. You can highlight the subsystem clone in a model using the function
Simulink.CloneDetection.highlightClone.

 Simulink.CloneDetection.highlightClone(cloneResults, 'AnalogControl/Saturation Detection');

3 Checking Systems Interactively

3-104

The clone results is an object of Simulink.CloneDetection.Results class. For detailed
information on how to see the clone results, see “Detect and Replace Subsystem Clones
Programmatically” on page 3-90.

See Also

Related Examples
• Clone Detector
• “Enable Component Reuse by Using Clone Detection” on page 3-33
• “Detect Clones Programmatically on Multiple Models Across Different Folders” on page 3-99

 Running Clone Detection Custom Script in a Project

3-105

Run Custom Model Advisor Checks on Architecture Models
Use Custom Model Advisor checks on Architecture models (System Composer).

Following is an example to identify the exceeded limit of Inports and Outports of a component in an
Architecture model.

1. On the MATLAB command window, run Advisor.Manager.refresh_customizations. This
step is necessary to publish the custom checks to the Model Advisor.

2. Open the architecture model.

open_system('slcheck_demo_systemcomposer.slx');
copyfile sl_customization_orig.m sl_customization.m f

3. From the Modeling tab, open Model Advisor. You can also open the Model Advisor by typing this
command at the MATLAB command prompt:

modeladvisor('slcheck_demo_systemcomposer.slx');

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

4. On the Model Advisor window, click By Product > System Composer and Select Check number
of Inports and Outports of a component check.

3 Checking Systems Interactively

3-106

5. Right-click the check and select Run This Check. Model Advisor runs the selected check on the
architecture model and displays the results.

6. Open the sl_customization file to view the demo source code.

edit sl_customization.m

7. Change the hardcoded threshold value for Inports and Outports to any desired values.

 Run Custom Model Advisor Checks on Architecture Models

3-107

8. Re-run the check to verify the updated results.

See Also

Related Examples
• “Define Custom Model Advisor Checks” on page 6-45
• “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor”

on page 6-9
• “Define Custom Edit-Time Checks that Fix Issues in Architecture Models” on page 6-17

3 Checking Systems Interactively

3-108

Check Systems Programmatically

4

Checking Systems Programmatically
The Simulink Check product includes a programmable interface for scripting and for command-line
interaction with the Model Advisor. Using this interface, you can:

• Create scripts and functions for distribution that check one or more systems using the Model
Advisor.

• Run the Model Advisor on multiple systems in parallel on multicore machines (requires a Parallel
Computing Toolbox™ license).

• Check one or more systems using the Model Advisor from the command line.
• Archive results for reviewing at a later time.

To define the workflow for running multiple checks on systems:

1 Specify a list of checks to run. Do one of the following:

• Create a Model Advisor configuration file that includes only the checks that you want to run.
• Create a list of check IDs.

2 Specify a list of systems to check.
3 Run the Model Advisor checks on the list of systems using the ModelAdvisor.run function.
4 Archive and review the results of the run.

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-6

More About
• “Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

4 Check Systems Programmatically

4-2

Create a Function to Check Multiple Systems
You can use the ModelAdvisor.run function to programmatically run checks on one or more models
or subsystems. This example shows how to create a function that runs Model Advisor checks on
multiple subsystems and then returns the number of failures and warnings.

This example also describes how you can modify the function to check multiple models or subsystems
in parallel. If you have the Parallel Computing Toolbox™ license, you can run this function in parallel
mode to reduce the processing time.

Write a Function to Run Checks and Return Results

1. In the MATLAB® window, select New > Function.

2. Save the file as run_configuration.m.

3. In the function, right-click on untitled and select Replace function name by file name. The
function name is updated to run_configuration.

function [outputArg1,outputArg2] = run_configuration(inputArg1,inputArg2)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
outputArg1 = inputArg1;
outputArg2 = inputArg2;
end

4. Delete the body of the function.

function [outputArg1,outputArg2] = run_configuration(inputArg1,inputArg2)
end

5. Replace the output arguments with [fail,warn] and the input argument with SysList.

function [fail,warn] = run_configuration(SysList)
end

6. Inside the function, specify the Model Advisor configuration file.

fileName = 'myCheckConfiguration.json';

7. The SysList input is a list of systems for the Model Advisor to run checks on. Call the
ModelAdvisor.run function on SysList.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

8. Determine the number of checks that return failures and warnings and output them to the fail
and warn output arguments, respectively:

fail = 0;
warn = 0;

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

The run_configuration function now contains this content:

 Create a Function to Check Multiple Systems

4-3

function [fail, warn] = run_configuration(SysList)

%RUN_CONFIGURATION Check systems with Model Advisor
% Check systems given as input and return number of failures and warnings.

fileName = 'myCheckConfiguration.json';

% Run the Model Advisor.
SysResultObjArray = ModelAdvisor.run(SysList,'Configuration', fileName);

fail = 0;
warn = 0;

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

end

Test the Function

1. Save the run_configuration function.

2. Create sl_customization file that is necessary for the custom configuration of checks in this
example. For more information about custom configuration files, see “Use the Model Advisor
Configuration Editor to Customize the Model Advisor” on page 7-3.

copyfile customizationFile.m sl_customization.m f

3. Save the subsystems that you want to run Model Advisor checks on to a variable called systems.

systems = {'sldemo_auto_climatecontrol/Heater Control',...
 'sldemo_auto_climatecontrol/AC Control',...
 'sldemo_auto_climatecontrol/Interior Dynamics'};

4. Run the run_configuration function on systems.

[fail,warn] = run_configuration(systems);

 Running Model Advisor...
Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.... ...

 Systems passed: 0 of 3

 Systems with warnings: 3 of 3

 Systems failed: 0 of 3
 Summary Report

4. Review the results by using the Summary Report or the disp function:

• To view the Model Advisor reports for each system, click the Summary Report link. This opens the
Model Advisor Command-Line Summary report.

• To view the number of failures and warnings returned by the run_configuration function, look
at the fail and warn variables.

4 Check Systems Programmatically

4-4

disp(['Number of checks that return failures: ', num2str(fail)]);

Number of checks that return failures: 0

disp(['Number of checks that return warnings: ', num2str(warn)]);

Number of checks that return warnings: 5

Checking Multiple Systems in Parallel

Checking multiple systems in parallel reduces the processing time required by the Model Advisor. If
you have a Parallel Computing Toolbox™ license, you can check multiple systems in parallel on a
multicore host machine.

To check multiple systems in parallel, call the ModelAdvisor.run function with 'ParallelMode' set
to 'On'.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName,'ParallelMode','On');

The Parallel Computing Toolbox does not support 32-bit Windows® machines.

Each parallel process runs checks on one model at a time. When the Model Advisor runs in parallel
mode, it does not support model data in the base workspace. Model data must be defined in the
model workspace or data dictionary.

See Also
ModelAdvisor.run | ModelAdvisor.setDefaultConfiguration

Related Examples
• “Checking Systems Programmatically” on page 4-2
• “Use the Model Advisor Configuration Editor to Create a Custom Model Advisor Configuration”

on page 7-7

 Create a Function to Check Multiple Systems

4-5

Archive and View Results

Archive Results
After you run the Model Advisor programmatically, you can archive the results. The
ModelAdvisor.run function returns a cell array of ModelAdvisor.SystemResult objects, one for
each system run. If you save the objects, you can use them to view the results at a later time without
rerunning the Model Advisor.

View Results in Command Window
When you run the Model Advisor programmatically, the system-level results of the run are displayed
in the Command Window. For example:
Systems passed: 0 of 1
Systems with warnings: 1 of 1
Systems failed: 0 of 1
Summary Report

The Summary Report link provides access to the Model Advisor Command-Line Summary report.

You can review additional results in the Command Window by calling the DisplayResults
parameter when you run the Model Advisor. For example, open the example model
sldemo_auto_climatecontrol.

openExample('sldemo_auto_climatecontrol')

Run the Model Advisor as follows:
SysResultObjArray = ModelAdvisor.run('sldemo_auto_climatecontrol/Heater Control',...
'mathworks.maab.jc_0021','DisplayResults','Details');

The results displayed in the Command Window are:
 Running Model Advisor
 Running Model Advisor on sldemo_auto_climatecontrol/Heater Control
 ==
 Model Advisor run: 10-Sep-2021 16:51:32
 Configuration: None
 System: sldemo_auto_climatecontrol/Heater Control
 System version: 10.4
 Created by: The MathWorks, Inc.
 ==
 (1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc_0021]
 --
 Summary: Pass Warning Fail Not Run
 0 1 0 0
 ==

 Systems passed: 0 of 1

 Systems with warnings: 1 of 1

 Systems failed: 0 of 1
 Summary Report

To display the results in the Command Window after loading an object, use the viewReport function.

View Results in Model Advisor Command-Line Summary Report
When you run the Model Advisor programmatically, a Summary Report link is displayed in the
Command Window. Clicking this link opens the Model Advisor Command-Line Summary report.

4 Check Systems Programmatically

4-6

To view the Model Advisor Command-Line Summary report after loading an object, use the
summaryReport function.

View Results in Model Advisor GUI
In the Model Advisor window, you can view the results of running the Model Advisor
programmatically using the viewReport function. In the Model Advisor window, you can review
results, run checks, fix warnings and failures, and view and save Model Advisor reports.

Tip To fix warnings and failures, you must rerun the check in the Model Advisor window.

View Model Advisor Report
For a single system or check, you can view the same Model Advisor report that you access from the
Model Advisor GUI.

To view the Model Advisor report for a system:

• Open the Model Advisor Command-Line Summary report. In the Systems Run table, click the link
for the Model Advisor report.

• Use the viewReport function.

To view individual check results:

• In the Command Window, generate a detailed report using the viewReport function with the
DisplayResults parameter set to Details, and then click the Pass, Warning, or Fail link for the
check. The Model Advisor report for the check opens.

 Archive and View Results

4-7

• Use the view function.

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | view | viewReport

Related Examples
• “Archive and View Model Advisor Run Results” on page 4-9
• “Create a Function to Check Multiple Systems” on page 4-3

More About
• “Run Model Advisor Checks and Review Results” on page 3-4
• “Address Model Check Results”
• “Generate Model Advisor Reports” on page 3-20
• “Save and View Model Advisor Check Reports”
• “Find Model Advisor Check IDs”
• “Save and Load Process for Objects”

4 Check Systems Programmatically

4-8

Archive and View Model Advisor Run Results
This example guides you through archiving the results of running checks so that you can review them
at a later time. To simulate archiving and reviewing, the steps in the tutorial detail how to save the
results, clear out the MATLAB workspace (simulates shutting down MATLAB), and then load and
review the results.

1 Open the example model sldemo_auto_climatecontrol.

openExample('sldemo_auto_climatecontrol')
2 Call the ModelAdvisor.run function:

SysResultObjArray = ModelAdvisor.run('sldemo_auto_climatecontrol/Heater Control',...
'mathworks.maab.jc_0021');

3 Save the SysResulObjArray for use at a later time:
save my_model_advisor_run SysResultObjArray

4 Clear the workspace to simulate viewing the results at a different time:
clear

5 Load the results of the Model Advisor run:
load my_model_advisor_run SysResultObjArray

6 View the results in the Model Advisor:
viewReport(SysResultObjArray{1},'MA')

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-6

 Archive and View Model Advisor Run Results

4-9

Model Metrics

5

Collect and Explore Metric Data by Using the Metrics
Dashboard

The Metrics Dashboard collects and integrates quality metric data from multiple Model-Based Design
tools to provide you with an assessment of your project quality status. To open the dashboard:

• In the Apps gallery, click Metrics Dashboard.
• At the command line, enter metricsdashboard(system). The system can be either a model

name or a block path to a subsystem. The system cannot be a Configurable Subsystem block.

You can collect metric data by using the dashboard or programmatically by using the
slmetric.Engine API. When you open the dashboard, if you have previously collected metric data
for a particular model, the dashboard populates from existing data in the database.

If you want to use the dashboard to collect (or re-collect) metric data, in the toolbar:

• Use the Options menu to specify whether to include model references and libraries in the data
collection.

• Click All Metrics. If you do not want to collect metrics that require compiling the model, click
Non-Compile Metrics.

The Metrics Dashboard provides the system name and a data collection timestamp. If there were
issues during data collection, click the alert icon to see warnings.

You can have only one dashboard open per model or subsystem at once. Also, if a dashboard is open
for a model or subsystem, and you programmatically collect metric data for that model or subsystem,
the dashboard automatically closes.

5 Model Metrics

5-2

Metrics Dashboard Widgets
The Metrics Dashboard contains widgets that provide visualization of metric data in these categories:
size, modeling guideline compliance, and architecture. To explore the data in more detail, click an
individual metric widget. For your selected metric, a table displays the value, aggregated value, and
measures (if applicable) at the model component level. From the table, the dashboard provides
traceability and hyperlinks to the data source so that you can get detailed results and recommended
actions for troubleshooting issues. When exploring drill-in data, note that:

• The Metrics Dashboard calculates metric data per component. A component can be a model,
subsystem, chart, or MATLAB Function block.

• You can view results in either a Table or Tree view. For the High Integrity and MAB compliance
widgets, you can also choose a Grid view. To view highlighted results, in the grid view, click a cell.

• To sort the results by value or aggregated value, click the corresponding value column header.
• For metrics other than the High Integrity and MAB compliance widgets, you can filter results. To
filter results, in the Table view, select the context menu on the right side of the TYPE,
COMPONENT, and PATH column headers. From the TYPE menu, select applicable components.
From the COMPONENT and PATH menus, type a component name or path in the search bar. The
Metrics Dashboard saves the filters for a widget, so you can view metric details for other widgets
and return to the filtered results.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-3

• In the Table and Tree view, a value or aggregated value of n/a indicates that results are not
available for that component. If the value and aggregated value are n/a, the Table view does not
list the component. The Tree view does list such a component.

• The metric data that is collected quantifies the overall system, including instances of the same
model. For aggregated values, the metric engine aggregates data from each instance of a model in
the referencing hierarchy. For example, if the same model is referenced twice in the system
hierarchy, its block count contributes twice to the overall system block count.

• If a subsystem, chart, or MATLAB Function block uses a parameter or is flagged for an issue, then
the parameter count or issue count is increased for the parent component.

• The Metrics Dashboard analyzes variants.

For custom metrics, you can specify widgets to add to the dashboard. You can also remove widgets.
To learn more about customizing the Metrics Dashboard, see “Customize Metrics Dashboard Layout
and Functionality” on page 5-36.

Size
This table lists the Metrics Dashboard widgets that provide an overall picture of the size of your
system. When you drill into a widget, this table also lists the detailed information available.

Widget Metric Drill-In Data
Blocks Simulink block count

(mathworks.metrics.SimulinkBlockC
ount)

Number of blocks by component

Models Model file count
(mathworks.metrics.ModelFileCount)

Number of model files by component

Files File count
(mathworks.metrics.FileCount)

Number of model and library files by
component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCount)

Effective lines of code, in MATLAB Function
block and MATLAB functions in Stateflow,
by component

5 Model Metrics

5-4

Widget Metric Drill-In Data
Stateflow LOC Effective lines of code for Stateflow

blocks
(mathworks.metrics.StateflowLOCCo
unt)

Effective lines of code for Stateflow blocks
by component

System Interface • Input and Output count
(mathworks.metrics.ExplicitIOCo
unt)

• Parameter count
(mathworks.metrics.ParameterCou
nt)

• Number of inputs and outputs by
component (includes trigger ports)

• Number of parameters by component

Modeling Guideline Compliance
For this particular system, the model compliance widgets indicate the level of compliance with
industry standards and guidelines. This table lists the Metrics Dashboard widgets related to modeling
guideline compliance and the detailed information available when you drill into the widget.

Widget Metric Drill-In Data
High Integrity
Compliance

Model Advisor standards check
compliance - High Integrity
(mathworks.metrics.ModelAdvisorCh
eckCompliance.hisl_do178)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results.

MAB Compliance Model Advisor standards check
compliance - MAB
(mathworks.metrics.ModelAdvisorCh
eckCompliance.maab)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results.

High Integrity
Check Issues

Model Advisor standards issues - High
Integrity
(mathworks.metrics.ModelAdvisorCh
eckIssues.hisl_do178)

• Number of compliance check issues by
component (see the following Note
below).

• Components without issues or
aggregated issues are not listed.

MAB Check Issues Model Advisor standards issues - MAB
(mathworks.metrics.ModelAdvisorCh
eckIssues.maab)

• Number of compliance check issues by
component (see the following Note
below).

• Components without issues or
aggregated issues are not listed.

Code Analyzer
Warnings

Warnings from MATLAB Code Analyzer
(mathworks.metrics.MatlabCodeAnal
yzerWarnings)

Number of Code Analyzer warnings by
component.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-5

Widget Metric Drill-In Data
Diagnostic
Warnings

Simulink diagnostic warning count
(mathworks.metrics.DiagnosticWarn
ingsCount)

• Number of Simulink diagnostic
warnings by component.

• If there are warnings, at the top of the
dashboard, there is a hyperlink that
opens the Diagnostic Viewer.

Note An issue with a compliance check that analyzes configuration parameters adds to the issue
count for the model that fails the check.

You can use the Metrics Dashboard to perform compliance and issues checking on your own group of
Model Advisor checks. For more information, see “Customize Metrics Dashboard Layout and
Functionality” on page 5-36.

Architecture
These widgets provide a view of your system architecture:

• The Potential Reuse/Actual Reuse widget shows the percentage of total number of
subcomponents that are clones and the percentage of total number of components that are linked
library blocks. Orange indicates potential reuse. Blue indicates actual reuse.

• The other system architecture widgets use a value scale. For each value range for a metric, a
colored bar indicates the number of components that fall within that range. Darker colors indicate
more components.

This table lists the Metrics Dashboard widgets related to architecture and the detailed information
available when you select the widget.

Widget Metric Drill-In Data
Potential Reuse /
Actual Reuse

Potential Reuse
(mathworks.metrics.CloneContent)
and Actual Reuse
(mathworks.metrics.LibraryContent)

Fraction of total number of subcomponents
that are clones as a percentage

Fraction of total number of components
that are linked library blocks as a
percentage

Integrate with the Identify Modeling Clones
tool by clicking the Open Conversion Tool
button.

Model Complexity Cyclomatic complexity
(mathworks.metrics.CyclomaticComp
lexity)

Model complexity by component

Blocks Simulink block count
(mathworks.metrics.SimulinkBlockC
ount)

Number of blocks by component

5 Model Metrics

5-6

Widget Metric Drill-In Data
Stateflow LOC Effective lines of code for Stateflow

blocks
(mathworks.metrics.StateflowLOCCo
unt)

Effective lines of code for Stateflow blocks
by component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCount)

Effective lines of code, in MATLAB Function
block and MATLAB functions in Stateflow,
by component

Metric Thresholds
For the Model Complexity, Modeling Guideline Compliance, and Reuse widgets, the Metrics
Dashboard contains default threshold values. These values indicate whether your data is Compliant
or requires review (Warning). For Compliant data, the widget contains green. For warning data, the
widget contains yellow. Widgets that do not have Metric threshold values contain blue.

• For the Modeling Guideline Compliance metrics, the metric threshold value is zero Model Advisor
issues. If you model has issues, the widgets contain yellow. If there are no issues, the widgets
contain green.

• If your model has warnings, the Code Analyzer and Diagnostic widgets are yellow. If there are
no warnings, the widgets contain green.

• For the reuse widgets, the metric threshold value is zero. If your model has potential clones, the
widget contains yellow. If there are no potential clones, the widget contains green.

• For the Model Complexity widget, the metric threshold value is 30. If your model has a
cyclomatic complexity greater than 30, the widget contains yellow. If the value is less than or
equal to 30, the widget contains green.

You can specify your own metric threshold values for all of the widgets in the Metrics Dashboard. You
can also specify values corresponding to a noncompliant range. For more information, see “Customize
Metrics Dashboard Layout and Functionality” on page 5-36.

Dashboard Limitations
When using the Metrics Dashboard, note these considerations:

• The analysis root for the Metrics Dashboard cannot be a Configurable Subsystem block.
• The Model Advisor, a tool that the Metrics Dashboard uses for data collection, cannot have more

than one open session per model. For this reason, when the dashboard collects data, it closes an
existing Model Advisor session.

• If you use an sl_customization.m file to customize Model Advisor checks, these customizations
can change your dashboard results. For example, if you hide Model Advisor checks that the
dashboard uses to collect metrics, the dashboard does not collect results for those metrics.

• The Metrics Dashboard does not count MAB checks that are not about blocks as issues. Examples
include checks that warn about font formatting or file names. In the Model Advisor Check Issues
widget, the tool might report zero MAB issues, but still report issues in the MAB Modeling
Guideline Compliance widget. For more information about these issues, click the MAB Modeling
Guideline Compliance widget.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-7

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-14
• “Model Metrics”
• “Collect Compliance Data and Explore Results in the Model Advisor” on page 5-24
• “Collect Metric Data Programmatically and View Data Through the Metrics Dashboard” on page

5-27

5 Model Metrics

5-8

Collect Model Metrics Using the Model Advisor
You can use the Model Advisor metrics to analyze the size, complexity, and readability of your model.

The results of these metrics can help you verify compliance with industry standards and guidelines.

You can run model metrics in the Model Advisor By Task > Model Metrics subfolder.

This example uses the sldemo_fuelsys model to demonstrate how to collect these metrics.

1 Open the model sldemo_fuelsys. In the MATLAB Command Window, enter:

openExample('sldemo_fuelsys')

2 In the model window, open the Modeling tab and click Model Advisor. A System Selector dialog
box opens. Click OK.

3 In the left pane of the Model Advisor, navigate to By Task > Model Metrics. Select the Count
Metrics, Complexity Metrics, and Readability Metrics checks.

4 Right-click the Model Metrics folder and click Run Selected Checks.
5 After the Model Advisor runs the analysis, explore the metrics results by selecting a model metric

in the Check Selector pane of the Model Advisor window. In the Count Metrics folder, select
Simulink block metric. The Report tab shows a table for the number of blocks at the root

model level and subsystem level.

Alternatively, you can view the analysis results in the Model Advisor report.

You can use the metric results to help compare your model to industry recommendations for model
size, complexity, and readability.

 Collect Model Metrics Using the Model Advisor

5-9

See Also

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-18
• “Collect Model Metrics Programmatically” on page 5-14
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11
• “Run Model Advisor Checks and Review Results” on page 3-4

5 Model Metrics

5-10

Create a Custom Model Metric for Nonvirtual Block Count
This example shows how to use the model metric API to create a custom model metric for counting
nonvirtual blocks in a model. After creating the metric, you can collect data for the metric, access the
results, and export the results.

Create Metric Class

To create a custom model metric, use the slmetric.metric.createNewMetricClass function to
create a new metric class derived from the base class slmetric.metric.Metric. The
slmetric.metric.createNewMetricClass function creates a file that contains a constructor and
an empty metric algorithm method.

1. For this example, make sure that you are in a writeable folder and create a new metric class named
nonvirtualblockcount.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. Ensure that a custom metricID named nonvirtualblockcount is not already registered in the
model metric repository.

slmetric.metric.unregisterMetric('nonvirtualblockcount');
slmetric.metric.refresh();

3. Write the metric algorithm into the slmetric.metric.Metric method, algorithm. The
algorithm calculates the metric data specified by the Advisor.component.Component class. The
Advisor.component.Types class specifies the types of model objects for which you can calculate
metric data. For this example, the file nonvirtualblockcount_orig.m contains the logic to create
a metric that counts the nonvirtual blocks. Copy this file to the nonvirtualblockcount.m file.

copyfile nonvirtualblockcount_orig.m nonvirtualblockcount.m f

When creating a custom metric, you must set the following properties of the
slmetric.metric.Metric class:

• ID: Unique metric identifier that retrieves the new metric data.
• Name: Name of the metric algorithm.
• ComponentScope: Model components for which the metric is calculated.
• CompileContext: Compile mode for metric calculation. If your model requires model

compilation, specify PostCompile. Collecting metric data for compiled models slows
performance.

• ResultCheckSumCoverage: Specify whether you want the metric data regenerated if source file
and Version have not changed.

• AggregationMode: How the metric algorithm aggregates metric data

Optionally, you can set these additional properties:

• Description: Description of the metric.
• Version: Metric version.

4. Now that your new model metric is defined in nonvirtualblockcount.m, you can register the new
metric in the metric repository.

 Create a Custom Model Metric for Nonvirtual Block Count

5-11

[id_metric,err_msg] = slmetric.metric.registerMetric(className);

Collect Metric Data

To collect metric data on models, use instances of slmetric.Engine. Using the getMetrics
method, specify the metrics you want to collect. For this example, specify the nonvirtual block count
metric for the sldemo_mdlref_conversion model.

1. Load the sldemo_mdlref_conversion model.

model = 'sldemo_mdlref_conversion';
load_system(model);

2. Create a metric engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

3. Collect metric data for the nonvirtual block count metric.

execute(metric_engine,id_metric);
rc = getMetrics(metric_engine,id_metric);

Display and Export Results

To access the metrics for your model, use instance of slmetric.metric.Result. In this example,
display the nonvirtual block count metrics for the sldemo_mdlref_conversion model. For each
result, display the MetricID, ComponentPath, and Value.

for n=1:length(rc)
 if rc(n).Status == 0
 results = rc(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ', results(m).ComponentPath]);
 disp([' Value: ', num2str(results(m).Value)]);
 disp(' ');
 end
 else
 disp(['No results for:',rc(n).MetricID]);
 end
 disp(' ');
end

MetricID: nonvirtualblockcount

 ComponentPath: sldemo_mdlref_conversion

 Value: 7

MetricID: nonvirtualblockcount

 ComponentPath: sldemo_mdlref_conversion/Bus Counter

 Value: 8

5 Model Metrics

5-12

MetricID: nonvirtualblockcount

 ComponentPath: sldemo_mdlref_conversion/More Info

 Value: 0

MetricID: nonvirtualblockcount

 ComponentPath: sldemo_mdlref_conversion/SubSystem1

 Value: 0

To export the metric results to an XML file, use the exportMetrics method. For each metric result, the
XML file includes the ComponentID, ComponentPath, MetricID, Value, AggregatedValue, and
Measure.

filename='MyMetricData.xml';
exportMetrics(metric_engine,filename);

For this example, unregister the nonvirtual block count metric.

slmetric.metric.unregisterMetric(id_metric);

Close the model.

clear;
bdclose('all');

Limitations

Custom metric algorithms do not support the path property on component objects:

• Linked Stateflow charts
• MATLAB Function blocks

Custom metric algorithms do not follow library links.

See Also
Advisor.component.Component | Advisor.component.Types | slmetric.Engine |
slmetric.metric.Metric | slmetric.metric.createNewMetricClass |
slmetric.metric.Result

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-18
• “Collect Model Metrics Programmatically” on page 5-14

 Create a Custom Model Metric for Nonvirtual Block Count

5-13

Collect Model Metrics Programmatically
You can use the model metric API to programmatically collect model metrics that help you assess the
architecture, complexity, and readability of your model. The results of these metrics can help you
verify compliance with industry standards and guidelines.

This example shows how to use the model metric API to programmatically collect subsystem and
block count metrics for a model. After collecting metrics for the model, you can access the results and
export them to a file.

Example Model

Open the vdp model.

model = 'vdp';
open_system(model);

Collect Metrics

To collect metric data on a model, create an slmetric.Engine object and call execute.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','vdp','RootType','Model');
execute(metric_engine);

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

5 Model Metrics

5-14

Access Results

Use the getMetrics method to specify the metrics you want to collect. For this example, specify the
block count and subsystem count metrics for the vdp model. getMetrics returns an array of
slmetric.metric.ResultCollection objects.

res_col = getMetrics(metric_engine,{'mathworks.metrics.SimulinkBlockCount',...
'mathworks.metrics.SubSystemCount'});

Store and Display Results

Create a cell array called metricData to store the MetricID, ComponentPath, and Value
properties for the metric results. The MetricID property is the identifier for the metric, the
ComponentPath property is the path to component for which the metric is calculated, and the Value
property is the metric value. Write a loop to display the results.

metricData ={'MetricID','ComponentPath','Value'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

MetricID: mathworks.metrics.SimulinkBlockCount

 ComponentPath: vdp

 Value: 13

MetricID: mathworks.metrics.SimulinkBlockCount

 ComponentPath: vdp/More Info

 Value: 1

MetricID: mathworks.metrics.SimulinkBlockCount

 ComponentPath: vdp/More Info/Model Info

 Value: 1

MetricID: mathworks.metrics.SimulinkBlockCount

 ComponentPath: vdp/More Info/Model Info/EmptySubsystem

 Value: 0

 Collect Model Metrics Programmatically

5-15

MetricID: mathworks.metrics.SubSystemCount

 ComponentPath: vdp

 Value: 1

MetricID: mathworks.metrics.SubSystemCount

 ComponentPath: vdp/More Info

 Value: 0

MetricID: mathworks.metrics.SubSystemCount

 ComponentPath: vdp/More Info/Model Info

 Value: 1

MetricID: mathworks.metrics.SubSystemCount

 ComponentPath: vdp/More Info/Model Info/EmptySubsystem

 Value: 0

Export Results

To export the MetricID, ComponentPath, and Value to a spreadsheet, use writetable to write
the contents of metricData to MySpreadsheet.xlsx.

filename = 'MySpreadsheet.xlsx';
T=table(metricData);
writetable(T,filename);

To export the metric results to an XML file, use the exportMetrics method. For each metric result,
the XML file includes the ComponentID, ComponentPath, MetricID, Value, AggregatedValue,
and Measure.

filename='MyMetricResults.xml';
exportMetrics(metric_engine,filename)

Close the vdp model.

bdclose(model);

Limitations

When you collect metric data, it is stored in a database file, Metrics.db, inside the simulation cache
folder. You cannot collect metric data on one platform, move the database file to another platform,
and then continue to collect additional metric data in that database file. For example, if you collect
metric data on a Windows machine and then move the database file to a Linux machine, you cannot
collect and store additional metric data in that database file. However, you are able to view that data
in the Metrics Dashboard.

See Also
slmetric.Engine | slmetric.metric.Result | slmetric.metric.ResultCollection

5 Model Metrics

5-16

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-18
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11

 Collect Model Metrics Programmatically

5-17

Model Metric Data Aggregation
You can better understand the size, complexity, and readability of a model and its components by
analyzing aggregated model metric data. Aggregated metric data is available in the
AggregatedValue and AggregatedMeasures properties of an slmetric.metric.Result object.
The AggregatedValue property aggregates the metric scalar values. The AggregatedMeasures
property aggregates the metric measures (that is, the detailed information about the metric values).

How Model Metric Aggregation Works
The implementation of a model metric defines how a metric aggregates data across a component
hierarchy. For MathWorks model metrics, the slmetric.metric.Metric class defines model metric
aggregation. This class includes the AggregationMode property, which has these options:

• Sum: Returns the sum of the Value property and the Value properties of its children components
across the component hierarchy. Returns the sum of the Meaures property and the Measures
properties of its children components across the component hierarchy.

• Max: Returns the maximum of the Value property and the Value properties of its children
components across the component hierarchy. Returns the maximum of the Measures property
and the Measures properties of its children components across the component hierarchy.

• None: No aggregation of metric values.

You can find descriptions of MathWorks model metrics and their AggregationMode property setting
in “Model Metrics”. For custom metrics, as part of the algorithm method, you can define how the
metric aggregates data. For more information, see “Create a Custom Model Metric for Nonvirtual
Block Count” on page 5-11.

This diagram shows how the software aggregates metric data across the components of a model
hierarchy. The parent model is at the top of the hierarchy. The components can be the following:

• Model
• Subsystem block
• Chart
• MATLAB function block
• Protected model

5 Model Metrics

5-18

In the diagram, the AggregationMode is Sum and the model and components in the hierarchy each
have a Value and an AggregatedValue. The AggregatedValue for a parent model or component
is the sum of its Value and the AggregatedValue of each direct child component. For example, in
this diagram, the AggregatedValue of the parent model is 75. The AggregatedValue of the parent
model is calculated as the sum of the Value of the parent model, 6, plus the AggregatedValue of
each direct child component, 33, 17, and 19.

Access Aggregated Metric Data
This example shows how to collect metric data programmatically in the metric engine, and then
access aggregated metric data.

1 Load the sldemo_applyVarStruct model.

model = 'sldemo_applyVarStruct';
open(model);
load_system(model);

2 Create an slmetric.Engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

3 Collect data for the Input output model metric.

execute(metric_engine,'mathworks.metrics.IOCount');
4 Get the model metric data that returns an array of slmetric.metric.ResultCollection

objects, res_col. Specify the input argument for AggregationDepth.

res_col = getMetrics(metric_engine,'mathworks.metrics.IOCount',...
'AggregationDepth','All');

The AggregationDepth input argument has two options: All and None. If you do not want the
getMetrics method to aggregate measures and values, specify None.

5 Display the results.

 Model Metric Data Aggregation

5-19

metricData ={'MetricID','ComponentPath','Value',...
 'AggregatedValue','Measures','AggregatedMeasures'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 disp([' Aggregated Value: ',num2str(results(m).AggregatedValue)]);
 disp([' Measures: ',num2str(results(m).Measures)]);
 disp([' Aggregated Measures: ',...
 num2str(results(m).AggregatedMeasures)]);
 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 tdmetricData{cnt+1,4} = results(m).Measures;
 metricData{cnt+1,5} = results(m).AggregatedMeasures;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

Here are the results:

MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct
 Value: 3
 Aggregated Value: 5
 Measures: 1 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Controller
 Value: 4
 Aggregated Value: 4
 Measures: 3 1 0 0
 Aggregated Measures: 3 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Aircraft
Dynamics
Model
 Value: 5
 Aggregated Value: 5
 Measures: 3 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Dryden Wind
Gust Models
 Value: 2
 Aggregated Value: 2
 Measures: 0 2 0 0
 Aggregated Measures: 0 2 0 0
MetricID: mathworks.metrics.IOCount

5 Model Metrics

5-20

 ComponentPath: sldemo_applyVarStruct/Nz pilot
calculation
 Value: 3
 Aggregated Value: 3
 Measures: 2 1 0 0
 Aggregated Measures: 2 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/More Info2
 Value: 0
 Aggregated Value: 0
 Measures: 0 0 0 0
 Aggregated Measures: 0 0 0 0

For the Input output metric, the AggregationMode is Max. For each component, the
AggregatedValue and AggregatedMeasures properties are the maximum number of inputs and
outputs of itself and its children components. For example, for sldemo_applyVarStruct, the
AggregatedValue property is 5, which is the sldemo_applyVarStruct/Aircraft Dynamics
Model component value.

See Also
slmetric.metric.Metric | slmetric.Engine | slmetric.metric.Result |
slmetric.metric.ResultCollection

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-18
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11

 Model Metric Data Aggregation

5-21

Identify Modeling Clones with the Metrics Dashboard
You can use the Metrics Dashboard tool to help you reuse subsystems by identifying clones across a
model hierarchy. Clones are identical MATLAB Function blocks, identical Stateflow® charts, and
subsystems that have identical block types and connections. The clones can have different parameter
settings and values. To replace clones with links to library blocks, from the Metrics Dashboard, you
can open the Clone Detector app.

Identify Clones

Open model ex_clone_detection.

open_system('ex_clone_detection.slx')

1 Save the ex_clone_detection.slx model to a local working folder.
2 On the Apps tab, click Metrics Dashboard.
3 In the Metrics Dashboard, click All Metrics.
4 In the Architecture section, the yellow bar in the Potential Reuse row indicates that the model

contains clones. The percentage is the fraction of the total number of subsystems, including
Stateflow charts and MATLAB Function blocks, that are clones. To see details, click the yellow
bar.

The model contains three clone groups. SS1 and SS4 are part of clone group one. SS3 and SS5 are
part of clone group two. SS6 and SS7 are part of clone group three.

5 Model Metrics

5-22

Replace Clones with Links to Library Blocks

1 Open the Clone Detector app by clicking Open Conversion Tool. The Clone Detector app opens.
For more information on the app, see “Enable Component Reuse by Using Clone Detection” on
page 3-33.

2 Click Replace Clones. The Clone Detector app replaces the clones with links to library blocks.
The library blocks are in the library specified by the Library to place clones parameter. This
parameter is on the Clone Results tab. The library is on the MATLAB® path. It has a default
name of newLibraryFile.

If you have a Simulink® Test™ license, you can verify the equivalency of the refactored model and
the original model. Click Check Equivalency.

Run Model Metrics on the Refactored Model

1 Navigate to the Metrics Dashboard.
2 Click All Metrics.
3 In the Architecture section, the blue bar in the Actual Reuse row indicates that 75% of model

components are links to library subsystems. The Potential Reuse row indicates that the model
does not contain any clones that do not have links to library blocks.

See Also

More About
• “Collect Model and Testing Metrics”

 Identify Modeling Clones with the Metrics Dashboard

5-23

Collect Compliance Data and Explore Results in the Model
Advisor

This example shows how to collect model metric data by using the Metrics Dashboard. From the
dashboard, explore detailed compliance results and fix compliance issues by using the Model Advisor.

open_system('sldemo_fuelsys');

Open the Metrics Dashboard

On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.

Collect Model Metrics

To collect the metric data for this model, click the All Metrics icon.

Explore Compliance Results

Locate the MODELING GUIDELINE COMPLIANCE section of the dashboard. This section displays
the percentage of High Integrity and MAB compliance checks that passed on each system. The bar
chart shows the number of issues reported by the checks in the corresponding check group.

5 Model Metrics

5-24

To see a table that details the number of compliance issues by component, click on the High
Integrity bar in the bar chart. For compliance checks that analyze configuration settings, each check
that does not pass adds one issue to the model on which it failed.

From the table, open the Throttle component in the model editor by clicking the component
hyperlink in the table. The model editor highlights blocks in the component that have compliance
issues.

Explore Compliance Results in the Model Advisor

1 In the Metrics Dashboard, return to the main dashboard page by clicking the Dashboard icon.
2 Click the High Integrity percentage gauge.
3 To see the status for each compliance check, click the Table view.

 Collect Compliance Data and Explore Results in the Model Advisor

5-25

4 Expand the sldemo_fuelsys node.
5 To explore check results in more detail, click the Check safety-related diagnostic settings for

sample time hyperlink.
6 In the Model Advisor Highlight dialog box, click Check safety-related diagnostic settings for

sample time hyperlink.

Fix a Compliance Issue

1 In the Model Advisor Report, the check results show the Current Value and Recommended Value
of diagnostic parameters.

2 To change the Current Value to the Recommended Value, click the parameter. The Model
Configuration Parameters dialog box opens.

3 Change the parameter settings.
4 Save your changes and close the dialog box.
5 Save the changes to the model.

Recollect Metrics

1 Return to the Metrics Dashboard.
2 To recollect the model metrics, click the All Metrics icon.
3 To return to the main dashboard page, click the Dashboard icon.
4 Confirm that the number of High Integrity check issues is reduced.

See Also

More About
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
• “Collect Model Metrics Programmatically” on page 5-14

5 Model Metrics

5-26

Collect Metric Data Programmatically and View Data Through
the Metrics Dashboard

This example shows how to use the model metrics API to collect model metric data for your model,
and then explore the results by using the Metrics Dashboard.

Collect Metric Data Programmatically

To collect all of the available metrics for the model sldemo_fuelsys, use the slmetric.Engine
API. The metrics engine stores the results in the metric repository file in the current Simulation
Cache Folder, slprj.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','sldemo_fuelsys','RootType','Model');
evalc('execute(metric_engine)');

Determine Model Compliance with MAB Guidelines

To determine the percentage of MAB checks that pass, use the metric compliance results.

metricID = 'mathworks.metrics.ModelAdvisorCheckCompliance.maab';
metricResult = getAnalysisRootMetric(metric_engine, metricID);
disp(['MAAB compliance: ', num2str(100 * metricResult.AggregatedValue, 3),'%']);

MAAB compliance: 64.4%

Open the Metrics Dashboard

To explore the collected compliance metrics in more detail, open the Metrics Dashboard for the
model.

metricsdashboard('sldemo_fuelsys');

The Metrics Dashboard opens data for the model from the active metric repository, inside the active
Simulation Cache Folder. To view the previously collected data, the slprj folder must be the same.

Find the MODELING GUIDELINE COMPLIANCE section of the dashboard. For each category of
compliance checks, the gauge indicates the percentage of compliance checks that passed.

 Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

5-27

The dashboard reports the same MAB compliance percentage as the slmetric.Engine API reports.

Explore the MAB Compliance Results

Underneath the percentage gauges, the bar chart indicates the number of compliance check issues.

Click the MAAB bar in the bar chart to view a table of the Model Advisor Check Issues for MAB.

The table details the number of check issues per model component. To sort the components by
number of check issues, click the Issues column.

5 Model Metrics

5-28

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-14
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

 Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

5-29

Fix Metric Threshold Violations in a Continuous Integration
Systems Workflow

This example shows how to use the Metrics Dashboard with open-source tools GitLab and Jenkins to
test and refine your model in a continuous integration systems workflow. Continuous integration is
the practice of merging all developer working copies of project files to a shared mainline. This
workflow saves time and improves quality by maintaining version control and automating and
standardizing testing.

This example refers to a project that contains the shipped project matlab:sldemo_slproject_airframe
and these files that you must provide:

• A MATLAB script that specifies metric thresholds and customizes the Metrics Dashboard.
• A MATLAB unit test that collects metric data and checks whether there are metric threshold

violations.

This example uses the Jenkins continuous integration server to run the MATLAB unit test to
determine if there are metric threshold violations. Jenkins archives test results for you to download
and investigate locally. GitLab is an online Git™ repository manager that you can configure to work
with Jenkins. This diagram shows how Simulink Check, GitLab, and Jenkins work together in a
continuous integration workflow.

Project Setup
In addition to the files in the matlab:sldemo_slproject_airframe project, you must provide these
additional files:

• A MATLAB unit test that collects metric data for the project and checks that the model files
contain no metric threshold violations. For more information on the MATLAB unit tests, see
“Script-Based Unit Tests”.

5 Model Metrics

5-30

matlab:sldemo_slproject_airframe
matlab:sldemo_slproject_airframe

• A MATLAB script that specifies metric thresholds and customizes the Metrics Dashboard. For
more information on how to customize the Metrics Dashboard, see “Customize Metrics Dashboard
Layout and Functionality” on page 5-36.

• A setup.m file that activates the configuration XML files that define metric thresholds, sets
custom metric families, and customizes the Metrics Dashboard layout. For this example, the
setup.m script contains this code:

function setup
 % refresh Model Advisor customizations
 Advisor.Manager.refresh_customizations();

 % set metric configuration with thresholds
 configFile = fullfile(pwd, 'config', 'MyConfiguration.xml');
 slmetric.config.setActiveConfiguration(configFile);

 uiconf = fullfile(pwd, 'config', 'MyDashboardConfiguration.xml');
 slmetric.dashboard.setActiveConfiguration(uiconf);
end

On the Project tab, click Startup Shutdown. For the Startup files field, specify the setup.m
file.

• An sl_customization.m file that activates the Model Advisor configuration file to customize the
Model Advisor checks. For more information on creating your own Model Advisor configuration,
see Configure Compliance Metrics on page 5-0 .

• A run script that executes during a Jenkins build. For this example, this code is in the run.m file:

% script executed during Jenkins build
function run(IN_CI)
 if (IN_CI)
 jenkins_workspace = getenv('WORKSPACE');
 cd(jenkins_workspace);
 end

 % open the sl project
 slproj = simulinkproject(pwd);

 % execute tests
 runUnitTest();

 slproj.close();

 if IN_CI
 exit
 end
end

• A cleanup.m file that resets the active metric configuration to the default configuration. For this
example, this code is in the cleanup.m file script:

function cleanup
 rmpath(fullfile(pwd, 'data'));
 Advisor.Manager.refresh_customizations();

 % reset active metric configuration to default
 slmetric.config.setActiveConfiguration('');
 slmetric.dashboard.setActiveConfiguration('');
end

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-31

On the Project tab, click Startup Shutdown. For the Shutdown files field, specify the
cleanup.m file.

• A .gitignore file that verifies that derived artifacts are not checked into GitLab. This code is in
the .gitignore file:

work/**
reports/**
*.asv
*.autosave

GitLab Setup
Create a GitLab project for source-controlling your Project. For more information, see https://
docs.gitlab.com/ee/index.html.

1 Install the Git client.
2 Set up a branching workflow. With GitLab, from the main branch, create a temporary branch for

implementing changes to the model files. Integration engineers can use Jenkins test results to
decide whether to merge a temporary branch into the main branch. For more information, see

https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows.
3 On the left side bar, under Settings > Repository, protect the main branch by enforcing the use

of merge requests when developers want to merge their changes into the main branch.
4 Under Settings, on the Integrations page, add a webhook to the URL of your Jenkins project.

This webhook triggers a build job on the Jenkins server.

Jenkins Setup
Install GitLab and TAP plugins. The MATLAB unit test uses the TAP plugin to stream results to a .tap
file. To enable communication of the test status from MATLAB to the Jenkins job, Jenkins imports
the .tap file.

Create a Jenkins project. Specify these configurations:

1 In your Jenkins project, click Configure.
2 On the General tab, specify a project name.
3 On the Source Code Management tab, for the Repository URL field, specify the URL of your

GitLab repository.
4 On the Build Triggers tab, select Build when a change is pushed to GitLab.
5 In the Build Environment section, select Use MATLAB Version and specify the MATLAB

root, for example, C:\Program Files\MATLAB\R2022a.
6 In the Build section, execute MATLAB to call the run script. The run script opens the project

and runs all unit tests. For the project in this example, the code is:

matlab -nodisplay -r...
 "cd /var/lib/jenkins/workspace/'18b Metrics CI Demo'; run(true)"

For more information, see “Continuous Integration Using MATLAB Projects and Jenkins”.
7 In the Post-build Actions tab, configure the TAP plugin to publish TAP results to Jenkins. In the

Test Results field, specify reports/*.tap. For Files to archive, specify reports/
,work/.

5 Model Metrics

5-32

https://docs.gitlab.com/ee/index.html
https://docs.gitlab.com/ee/index.html
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

The TAP plugin shows details from the MATLAB unit test in the extended results of the job. The
Jenkins archiving infrastructure saves derived artifacts that are generated during a Jenkins build.

Continuous Integration Workflow
After setting up your project, Jenkins, and GitLab, follow the continuous integration workflow.

Phase 1: Feature Development

1 Create a local clone of the GitLab repository. See “Check Out from SVN Repository”.
2 In Simulink, navigate to the local GitLab repository.
3 Create a feature branch and fetch and check-out files. See “Branch and Merge Files with Git”

and “Pull, Push, and Fetch Files with Git”.
4 Make any necessary changes to the project files.
5 Simulate the model and validate the output in the Simulation Data Inspector.
6 Run MATLAB unit tests. For more information, see runtests.
7 Add and commit the modified models to the feature branch. See “Branch and Merge Files with

Git” and “Pull, Push, and Fetch Files with Git”.
8 Push changes to the GitLab repository. See “Branch and Merge Files with Git” and “Pull, Push,

and Fetch Files with Git”.
9 In GitLab, create a merge request. Select the feature branch as source branch and the target

branch as main. Click Compare branches and continue.
10 If the feature is not fully implemented, mark the merge request as a work in progress by adding

the letters WIP: at the beginning of the request. If the merge request is not marked WIP:, it
immediately triggers a build after creation.

11 Click Create merge request.

Phase 2: Qualification by Using Continuous Integration

1 If the letters WIP: are not at the beginning of the merge request, the push command triggers a
Jenkins build. In the Jenkins Setup part of this example, you configured Jenkins to perform a
build when you pushed changes to GitLab. To remove the letters, click Resolve WIP status.

2 Navigate to the Jenkins project. In Build History, you can see the build status.
3 Click the Build.
4 Click Tap Test Results.
5 For this example, the MetricThresholdGateway.m unit test did not pass for three metrics

because these metrics did not meet the thresholds. To investigate this data, you must download
the data locally.

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-33

Phase 3: Investigate Quality Issues Locally
1 Download the archived results to a local Git repository workspace.
2 Unzip the downloaded files. Copy the reports/ and work/ folders to the respective folders in

the local repository.
3 To explore the results, open the project and the Metrics Dashboard.

5 Model Metrics

5-34

4 To resolve the test failures, make the necessary updates to the models. Push the changes to the
feature branch in GitLab.

5 Integration engineers can use Jenkins test results to decide when it is acceptable to perform the
merge of the temporary branch into the main branch.

See Also
slmetric.config.setActiveConfiguration |
slmetric.dashboard.setActiveConfiguration

More About
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-9
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

External Websites
• https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-

verification-of-simulink-models.html

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-35

https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html

Customize Metrics Dashboard Layout and Functionality
Customize the Metrics Dashboard by using the model metric programming interface. Customizing the
dashboard extends your ability to use model metrics to assess that your model and code comply with
size, complexity, and readability requirements. You can perform these Metrics Dashboard
customizations:

• Configure compliance metrics to obtain compliance and issues metric data on your Model Advisor
configuration.

• Customize the dashboard layout by adding custom metrics, removing widgets, and configuring
existing widgets.

• Categorize metric data as compliant, warning, and noncompliant by specifying metric threshold
values.

Configure Compliance Metrics

Use the Metrics Dashboard and metric APIs to obtain compliance and issues metric data on your
Model Advisor configuration or on an existing check group such as the MISRA checks. For
information on how to create a custom configuration file, see “Use the Model Advisor Configuration
Editor to Customize the Model Advisor” on page 7-3. After you have set up your Model Advisor
configuration, follow these steps to specify the check groups for which you want to obtain compliance
and issues metric data:

1. To open the model, at the MATLAB command prompt, enter this command:

vdp

2. Open the default configuration and save a corresponding slmetric.config.Configuration
object to the base workspace.

metricconfig = slmetric.config.Configuration.openDefaultConfiguration();

3. Create a cell array, values, that specifies the Model Advisor Check Group IDs for MAAB, High-
Integrity, and MISRA check groups.

• The value maab corresponds to a subset of the MAAB checks.
• The value hisl_do178 corresponds to a subset of the High-Integrity System checks.
• The value _SYSTEM_By Task_misra_c is the Check Group ID for the MISRA check group

Modeling Standards for MISRA C:2012.

values = {'maab', 'hisl_do178', '_SYSTEM_By Task_misra_c'};

To obtain the Model Advisor Check Group ID for a group of checks, open the Model Advisor
Configuration Editor and select the folder that contains the desired group of checks. The Check
Group ID is shown in the Information tab. For more information on the Model Advisor
Configuration Editor, see “Use the Model Advisor Configuration Editor to Customize the Model
Advisor” on page 7-3.

4. To set the configuration, pass the values cell array into the
setMetricFamilyParameterValues method. The 'ModelAdvisorStandard' string is a standard
string that you must supply to thesetMetricFamilyParameterValues method.

setMetricFamilyParameterValues(metricconfig,'ModelAdvisorStandard', values);

5 Model Metrics

5-36

5. Open the default configuration for the Metrics Dashboard layout (that is, the one that ships with
the Metrics Dashboard).

dashboardconfig = slmetric.dashboard.Configuration.openDefaultConfiguration();

6. Obtain the slmetric.dashboard.Layoutobject from the
slmetric.dashboard.Configuration object.

layout = getDashboardLayout(dashboardconfig);

7. Obtain widget objects that are in the layout object.

layoutWidget = getWidgets(layout);

8. Obtain the compliance group from the layout.

complianceGroup = layoutWidget(3);

The slmetric.dashboard.Layout object contains these objects:

• An slmetric.dashboard.Container object that holds an slmetrics.dashboard.Widget
object of type SystemInfo. The red number one in the diagram below indicates the SystemInfo
widget.

• An slmetric.dashboard.Groupobject that has the title SIZE.
• An slmetrics.dashboard.Group object that has the title MODELING GUIDELINE

COMPLIANCE.
• An slmetrics.dashboard.Group object that has the title ARCHITECTURE.

In the diagram, the red numbers 1, 2, 3, and 4 indicate their order in the layoutWidget array.

 Customize Metrics Dashboard Layout and Functionality

5-37

9. The modeling guideline compliance group contains two containers. The top container contains the
High Integrity and MAAB compliance and check issues widgets. The red numbers 3.1.1, 3.1.2, and
3.1.3 indicate the order of the three widgets in the first container. The second container contains the
Code Analyzer Warnings and Diagnostic Warnings widgets.

Remove the High Integrity compliance widget.

complianceContainers = getWidgets(complianceGroup);
complianceContainerWidgets = getWidgets(complianceContainers(1));
complianceContainers(1).removeWidget(complianceContainerWidgets(1));

10. The Metric ID for the configured MISRA check compliance metric is
'mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c'.

misraComplianceMetricID = 'mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c';

The Metric ID for a configured check compliance metric is of the form <Family ID>.<Model
Advisor Check Group ID>.

5 Model Metrics

5-38

• Metrics configured for Model Advisor compliance use the <Family ID>
mathworks.metrics.ModelAdvisorCheckCompliance. Configured check compliance metrics
calculate the fraction of Model Advisor checks that pass for the selected Model Advisor Check
Group ID.

• The Model Advisor Check Group ID, _SYSTEM_By Task_misra_c, is the Check Group ID for
the MISRA check group Modeling Standards for MISRA C:2012.

To obtain the Model Advisor Check Group ID for a group of checks, open the Model Advisor
Configuration Editor and select the folder that contains the desired group of checks. The Check
Group ID is shown in the Information tab. For more information on the Model Advisor
Configuration Editor, see “Use the Model Advisor Configuration Editor to Customize the Model
Advisor” on page 7-3.

For more information on configured compliance metrics, see “Model Metrics”.

11. Create a custom widget for visualizing MISRA check compliance metrics.

misraWidget = complianceContainers(1).addWidget('Custom', 1);
misraWidget.Title = ('MISRA');
misraWidget.VisualizationType = 'RadialGauge';
misraWidget.setMetricIDs(misraComplianceMetricID);
misraWidget.setWidths(slmetric.dashboard.Width.Medium);

12. The bar chart widget currently visualizes the High Integrity and MAAB check groups. Point this
widget to the Metric IDs for the MISRA check issues and MAAB check issues.

misraIssuesMetricID = 'mathworks.metrics.ModelAdvisorCheckIssues._SYSTEM_By Task_misra_c';
maabIssuesMetricID = 'mathworks.metrics.ModelAdvisorCheckIssues.maab';

setMetricIDs(complianceContainerWidgets(3),...
({misraIssuesMetricID,maabIssuesMetricID}));
complianceContainerWidgets(3).Labels = {'MISRA', 'MAAB'};

The Metric ID for a configured check compliance metric is of the form <Family ID>.<Model
Advisor Check Group ID>.

• Metrics configured for Model Advisor compliance issues use the <Family ID>
mathworks.metrics.ModelAdvisorCheckIssues. Configured check compliance issues
metrics calculate the number of issues reported by the selected Model Advisor Check Group ID.

• The Model Advisor Check Group ID, _SYSTEM_By Task_misra_c, is the Check Group ID for
the MISRA check group Modeling Standards for MISRA C:2012. maab is a Check Group
ID that corresponds to a subset of MAAB checks.

To obtain the Model Advisor Check Group ID for a group of checks, open the Model Advisor
Configuration Editor and select the folder that contains the desired group of checks. The Check
Group ID is shown in the Information tab. For more information on the Model Advisor
Configuration Editor, see “Use the Model Advisor Configuration Editor to Customize the Model
Advisor” on page 7-3.

For more information on configured compliance metrics, see “Model Metrics”.

13. To run and view the Metrics Dashboard at this point in the example, enter the following lines of
code in the MATLAB Command Window. The save commands serialize the API information to XML
files. The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active configuration objects.

 Customize Metrics Dashboard Layout and Functionality

5-39

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');
slmetric.config.setActiveConfiguration(fullfile(pwd,'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd,'DashboardConfig.xml'));

14. To open the Metrics Dashboard, enter the following code in the MATLAB Command Window.

metricsdashboard vdp

15. Click the All Metrics button to run each of the metrics. The Metrics Dashboard displays results
for the MISRA checks instead of the High Integrity checks.

16. Close the Metrics Dashboard.

Add a Custom Metric to Dashboard

Create a custom metric that counts nonvirtual blocks. To display this metric on the Metrics
Dashboard, specify a widget. Add it to the size group.

5 Model Metrics

5-40

1. Using the createNewMetricClass function, create a new metric class named
nonvirtualblockcount. The function creates a file, nonvirtualblockcount.m, in the current
working folder. The file contains a constructor and empty metric algorithm method. For this example,
make sure you are in a writable folder.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. To write the metric algorithm, open the nonvirtualblockcount.m file and add the metric to the
file. For this example, the file nonvirtualblockcount_orig.m contains the logic to create a metric
that counts the nonvirtual blocks. Copy this file to the to nonvirtualblockcount.m.

copyfile nonvirtualblockcount_orig.m nonvirtualblockcount.m f

3. Register the new metric in the metric repository.

[id_metric,err_msg] = slmetric.metric.registerMetric(className);

The new nonvirtual block count metric has the metric ID nonvirtualblockcount.

To view the available metrics for your metric engine, use
slmetric.metric.getAvailableMetrics.

availableMetricIDs = slmetric.metric.getAvailableMetrics

4. Remove the widget that represents the Simulink block count metric. This widget is the first one in
the size group. The size group is second in the layoutWidget array.

sizeGroup = layoutWidget(2);
sizeGroupWidgets = sizeGroup.getWidgets();
sizeGroup.removeWidget(sizeGroupWidgets(1));

5. Add a widget that displays the nonvirtual block count metric. For custom widgets, the default
visualization type is single value. If you want to use a different visualization type, specify a different
value for the VisualizationType property.

newWidget = sizeGroup.addWidget('Custom', 1);
newWidget.Title = ('Nonvirtual Block Count');
newWidget.setMetricIDs('nonvirtualblockcount');
newWidget.setWidths(slmetric.dashboard.Width.Medium);
newWidget.setHeight(70);

6. Specify whether there are lines separating the custom widget from other widgets in the group.
These commands specify that there is a line to the right of the widget.

s.top = false;
s.bottom = false;
s.left = false;
s.right = true;
newWidget.setSeparators([s, s, s, s]);

7. To run and view the Metrics Dashboard at this point in the example, enter the following lines of
code in the MATLAB Command Window. The save commands serialize the API information to XML
files. The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active configuration objects.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

 Customize Metrics Dashboard Layout and Functionality

5-41

slmetric.config.setActiveConfiguration(fullfile(pwd,'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd,'DashboardConfig.xml'));

8. To open the Metrics Dashboard, enter the following code in the MATLAB Command Window.

metricsdashboard vdp

9. Click the All Metrics button to run each of the metrics. The Metrics Dashboard displays results for
the nonvirtual block count metric instead of the Simulink block count metric.

10. Close the Metrics Dashboard.

Add Metric Thresholds

For the nonvirtual block count and MISRA metrics, specify metric threshold values. Specifying these
values enables you to access the quality of your model by categorizing your metric data as follows:

5 Model Metrics

5-42

• Compliant — Metric data that is in an acceptable range.
• Warning — Metric data that requires review.
• Noncompliant — Metric data that requires you to modify your model.

1. Access the slmetric.config.ThresholdConfiguration object in the
slmetric.config.Configuration object metricconfig. Create the corresponding
slmetric.config.ThresholdConfiguration object (TC) in the base workspace.

TC = getThresholdConfigurations(metricconfig);

2. Add two slmetric.config.Threshold objects to TC. Each slmetric.config.Threshold
object contains a default slmetric.config.Classification object that is compliant. Specify the
compliant metric ranges.

T1 = addThreshold(TC, misraIssuesMetricID,'AggregatedValue');
C = getClassifications(T1);
C.Range.Start = -inf;
C.Range.End = 0;
C.Range.IncludeStart = 0;
C.Range.IncludeEnd = 1;

T2 = addThreshold(TC,misraComplianceMetricID,'AggregatedValue');
C = getClassifications(T2);
C.Range.Start = 1;
C.Range.End = inf;
C.Range.IncludeStart = 1;
C.Range.IncludeEnd = 0;

3. For each slmetric.config.Threshold object, specify the Warning ranges.

C = addClassification(T1,'Warning');
C.Range.Start = 0;
C.Range.End = inf;
C.Range.IncludeStart = 0;
C.Range.IncludeEnd = 1;

C = addClassification(T2,'Warning');
C.Range.Start = -inf;
C.Range.End = 1;
C.Range.IncludeStart = 0;
C.Range.IncludeEnd = 0;

These commands specify that if the model has MISRA check issues, the model status is warning. If
the model does not have MISRA check issues, the model status is compliant.

4. Add a third slmetric.config.Threshold object to TC. Specify compliant, warning, and
noncompliant ranges for this slmetric.config.Threshold object.

T3 = addThreshold(TC,'nonvirtualblockcount', 'AggregatedValue');
C = getClassifications(T3);
C.Range.Start = -inf;
C.Range.End = 20;
C.Range.IncludeStart = 1;
C.Range.IncludeEnd = 1;

C = addClassification(T3, 'Warning');
C.Range.Start = 20;

 Customize Metrics Dashboard Layout and Functionality

5-43

C.Range.End = 30;
C.Range.IncludeStart = 0;
C.Range.IncludeEnd = 1;

C = addClassification(T3, 'NonCompliant');
C.Range.Start = 30;
C.Range.End = inf;
C.Range.IncludeStart = 0;
C.Range.IncludeEnd = 1;

These commands specify that the compliant range is less than or equal to 20. The warning range is
from 20 up to but not including 30. The noncompliant range is greater than 30.

5. Save the configuration objects. These commands serialize the API information to XML files.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

6. Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

7. For your model, open the Metrics Dashboard.

metricsdashboard vdp

5 Model Metrics

5-44

For the MISRA check compliance issues, the gauge is yellow because 86.1% of the checks pass. A
percentage less than 100% generates a warning. The bar chart also displays a yellow because the
model contains three MISRA check issues. A number greater than zero generates a warning.

The Nonvirtual Block Count widget is in the compliant range because there are 11 nonvirtual
blocks.

8. To reset the configuration and unregister the metric, enter the following lines of code in the
MATLAB Command Window.

slmetric.metric.unregisterMetric(className);
slmetric.dashboard.setActiveConfiguration('');
slmetric.config.setActiveConfiguration('');

See Also
slmetric.dashboard.Configuration | slmetric.config.Configuration

 Customize Metrics Dashboard Layout and Functionality

5-45

More About
• “Model Metrics”
• “Collect Model and Testing Metrics”
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5 Model Metrics

5-46

Compare Model Complexity and Code Complexity Metrics
Analyze the complexity of your system by using the cyclomatic complexity metrics. The metrics
indicate the structural complexity of a system by measuring the number of linearly independent paths
in the system. By limiting the cyclomatic complexity of your system, you can make it more readable,
maintainable, and portable. You can measure the cyclomatic complexity for both your model and the
code generated from your model. Note that differences between the code and the model may result in
different levels of cyclomatic complexity. To measure the cyclomatic complexity of a model, use the
Metrics Dashboard and the “Cyclomatic complexity metric”.

Metric Threshold Values
Code Complexity Threshold

When you develop an algorithm by hand-writing code, you assess the readability of the code by
measuring the cyclomatic complexity of the code. Code that has higher cyclomatic complexity can be
more difficult to understand and maintain. To standardize code maintainability, your organization may
select a threshold value that limits the cyclomatic complexity of your code. For example, if you write
code that conforms to the “HIS Code Complexity Metrics” (Polyspace Bug Finder), you check that the
cyclomatic complexity of the code is at or below the threshold of 10.

Model Complexity Threshold

When you use the model-based design workflow to model an algorithm and generate code, you can
assess the readability of the system by using the cyclomatic complexity metric of the model instead of
measuring the cyclomatic complexity of the generated code. The graphical modeling of Simulink
allows you to manage complex algorithms better than traditional hand code does. To account for this,
the default cyclomatic complexity metric threshold for the model is 30, which is higher than the
standard code complexity threshold of 10. To change the model metric threshold value, see
“Customize Metrics Dashboard Layout and Functionality” on page 5-36.

Comparing Code and Model Complexity Metric Results
The cyclomatic complexity of a model can be higher or lower than the cyclomatic complexity of the
generated code. This variation depends on your model and on your code generation customizations.
Some of the patterns that generate different complexity measurements include:

• Code generation optimizations that eliminate extra logic that the model contains. These
optimizations can reduce the complexity of the code.

• Error checks in the generated code that the model metric analysis does not consider. These error
checks can increase the complexity of the code.

• Additional logic in the generated code for a specific target. This logic can increase the complexity
of the code.

For example, consider the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise');
run(fullfile(path,'slVerificationCruiseStart'))

 Compare Model Complexity and Code Complexity Metrics

5-47

2 From the project, open the model folder and open
simulinkCruiseErrorAndStandardsExample.

The model contains the chart Compute target speed. To generate and analyze code for the chart by
using Polyspace, see “Analyze Code and Test Software-in-the-Loop” on page 2-12.

5 Model Metrics

5-48

The reports that Polyspace generates for the code include code metrics such as cyclomatic
complexity. The generated step function for the chart has a cyclomatic complexity of 20.

To measure cyclomatic complexity of the model, use the Metrics Dashboard:

1 Open the Metrics Dashboard. In the Apps gallery, click Metrics Dashboard.
2 Click All Metrics.
3 To view detailed cyclomatic complexity results, click the Model Complexity widget.

The chart in the model has a cyclomatic complexity of 30. For this chart, the code generator
optimizes the code by consolidating logic, so the generated code has a lower cyclomatic complexity
than the chart in the model. In other cases, a model may have lower cyclomatic complexity than its
generated code. When you maintain the model for code generation, use the cyclomatic complexity of
the model to measure your system's complexity.

See Also
“Cyclomatic complexity metric”

 Compare Model Complexity and Code Complexity Metrics

5-49

More About
• “Analyze Code and Test Software-in-the-Loop” on page 2-12

5 Model Metrics

5-50

Explore Status and Quality of Testing Activities Using the
Model Testing Dashboard

The Model Testing Dashboard collects metric data from the model design and testing artifacts in a
project to help you assess the status and quality of your requirements-based model testing.

The dashboard analyzes the artifacts in a project, such as requirements, models, and test results.
Each metric in the dashboard measures a different aspect of the quality of the testing of your model
and reflects guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C.

This example shows how to assess the testing status of a unit by using the Model Testing Dashboard.
If the requirements, models, or tests in your project change, use the dashboard to assess the impact
on testing and update the artifacts to achieve your testing goals.

Explore Testing Artifacts and Metrics for a Project

Open the project that contains the models and testing artifacts. For this example, in the MATLAB®
Command Window, enter:

dashboardCCProjectStart('incomplete')

Open the Model Testing Dashboard by using one of these approaches:

• On the Project tab, click Model Testing Dashboard.
• In the Command Window, enter:

modelTestingDashboard

The first time that you open the dashboard for a project, the dashboard must identify the artifacts in
the project and collect traceability information.

The dashboard displays metric results for the unit you select in the Artifacts panel.

 Explore Status and Quality of Testing Activities Using the Model Testing Dashboard

5-51

Click the unit db_DriverSwRequest to view its metric results. When you initially select a unit in the
Artifacts panel, the dashboard automatically collects the metric results for the unit. If you want to
collect metrics for each of the units in the project, click Collect > Collect All.

If metric data was previously collected for a unit, the dashboard populates with the existing data.
Collecting data for a metric requires a license for the product that supports the underlying artifacts,
such as Requirements Toolbox™, Simulink® Test™, or Simulink Coverage™. Once metric results have
been collected, viewing the results requires only a Simulink® Check™ license. For more information,
see “Model Testing Metrics”.

View Traceability of Design and Testing Artifacts

The Artifacts panel organizes the units in the project under the component models according to the
model reference hierarchy. Expand a unit to see the artifacts in the project that trace to it.

For this example, in the Artifacts panel, expand the folder for the unit db_DriverSwRequest and
its subfolders.

5 Model Metrics

5-52

For each unit in the project, the traced artifacts include:

Functional Requirements

Requirements of Type Functional that are either implemented by or upstream of the unit. Use the
Requirements Toolbox to create or import the requirements in a requirements file (.slreqx).

• Implemented — Functional requirements that are directly linked to the unit with a link Type of
Implements. The dashboard uses these requirements in the metrics for this unit.

• Upstream — Functional requirements that are indirectly or transitively linked to the implemented
requirements. The dashboard does not use these requirements in the metrics for this unit.

Design

The model file that contain the unit that you test and the libraries and data dictionaries that the
model uses.

Tests

Test cases and test harnesses that trace to the unit. Create the test cases in a test suite file by using
Simulink Test.

• Unit Tests — Test cases that the dashboard considers as unit tests. A unit test directly tests either
the entire unit model or the model subsystems. The dashboard uses these tests in the metrics for
this unit.

• Others — Test cases that trace to the unit but the dashboard does not consider as unit tests. For
example, the dashboard does not consider tests on a library to be unit tests. The dashboard does
not use these tests in the metrics for this unit.

• Test Harnesses — External test harnesses that trace to the unit or unit subsystems. Double-click
a test harness to open it.

 Explore Status and Quality of Testing Activities Using the Model Testing Dashboard

5-53

Test Results

Results of the test cases for the unit. To use the results in the dashboard, run the unit tests, export
the results, and save them as a results file. The dashboard shows the latest saved results from the
test cases.

• Unit Simulation — Simulation results from unit tests. The dashboard uses these results in the
metrics for this unit.

• Others — Results that are not simulation results, are not from unit tests, or are only reports. For
example, SIL results are not simulation results. The dashboard does not use these results in the
metrics for this unit.

If there are changes to artifact files in the project, the dashboard detects the changes and
automatically re-traces the artifacts to update the artifact traceability information shown in the
Artifacts panel. You can turn the automatic re-tracing on or off by clicking Collect > Auto Trace.

An artifact appears under the folder Trace Issues if there are unexpected requirement links,
requirement links which are broken or not supported by the dashboard, or artifacts that the
dashboard cannot trace to a unit. The folder includes artifacts that are missing traceability and
artifacts that the dashboard is unable to trace. If an artifact generates an error during traceability
analysis, it appears under the Errors folder. For more information about artifact tracing issues and
errors, see “Trace Artifacts to Units for Model Testing Analysis” on page 5-70.

Navigate to the requirement artifact for Cancel Switch Detection. Expand db_DriverSwRequest >
Functional Requirements > Implemented > db_SoftwareReqs.slreqx and select the
requirement Cancel Switch Detection.

At the bottom of the Artifacts panel, the Details pane displays the name of the artifact and the path
to the artifact from the project root. You can scroll to a unit, collapse or expand the artifact list, or
open a unit dashboard by right-clicking an artifact and selecting an action. You can also use the menu

button to the right of the search bar to perform these actions, restore the default view of the
artifacts list, or view a legend of the dashboard icons.

View Metric Results for a Unit

You can collect and view metric results for each unit in the Artifacts panel. To view the results for
the unit db_DriverSwRequest, in the Artifacts panel, click db_DriverSwRequest. When you click
on a unit, the dashboard shows the Model Testing information for that unit. The top of the
dashboard shows the name of the unit, the data collection timestamp, and the user name that
collected the data. To open the results for multiple units at the same time, right-click a unit and click
Open unit dashboard in new tab.

If artifacts in the project change after the results are collected, the dashboard detects this and shows
a warning banner at the top of the dashboard to indicate that the metric results are stale.

The Stale icon appears on dashboard widgets that might show stale data which does
not include the changes. If you see the warning banner, click the Collect button on the warning
banner to re-collect the metric data and to update the stale widgets with data from the current

5 Model Metrics

5-54

artifacts. You can also find the Collect button on the dashboard toolstrip in the Metrics section. For
the unit in this example, the metric results in the dashboard are not stale.

The dashboard widgets summarize the metric data results and show testing issues you can address,
such as:

• Missing traceability between requirements and tests
• Tests or requirements with a disproportionate number of links between requirements and tests
• Failed or disabled tests
• Missing model coverage

You can use the overlays in the Model Testing Dashboard to see if the metric results for a widget are
compliant, non-compliant, or generate a warning that the metric results should be reviewed. Results
are compliant if they show full traceability, test completion, or model coverage. In the Overlays
section of the toolstrip, check that the Compliant and Non-Compliant buttons are selected. The
overlay appears on the widgets that have results in that category. You can see the total number of
widgets in each compliance category in the top-right corner of the dashboard.

To see the compliance thresholds for a metric, point to the overlay icon.

You can hide the overlay icons by clicking a selected category in the Overlays section of the toolstrip.
For more information on the compliance thresholds for each metric, see “Model Testing Metrics”.

To explore the data in more detail, click an individual metric widget to open the Metric Details. For
the selected metric, a table displays a metric value for each artifact. The table provides hyperlinks to
open the artifacts so that you can get detailed results and fix the artifacts that have issues. When
exploring the tables, note that:

• You can filter the results by the value returned for each artifact. To filter the results, click the filter

icon in the table header.
• By default, some widgets apply a filter to the table. For example, for the Requirements Linked

to Tests section, the table for the Unlinked widget is filtered to only show requirements that are
missing linked test cases. Tables that have filters show a check mark in the bottom right corner of

the filter icon .
• To sort the results by artifact, source file, or value, click the corresponding column header.

 Explore Status and Quality of Testing Activities Using the Model Testing Dashboard

5-55

Evaluate Testing and Traceability of Requirements

A standard measure of testing quality is the traceability between individual requirements and the test
cases that verify them. To assess the traceability of your tests and requirements, use the metric data
in the Test Case Analysis section of the dashboard. You can quickly find issues in the requirements
and tests by using the data summarized in the widgets. Click a widget to view a table with detailed
results and links to open the artifacts.

Requirements Missing Tests

In the Requirements Linked to Tests section, the Unlinked widget indicates how many
requirements are missing links to test cases. To address unlinked requirements, create test cases that
verify each requirement and link those test cases to the requirement. The Requirements with Tests
gauge widget shows the linking progress as the percentage of requirements that have tests.

Click any widget in the section to see the detailed results in the Requirement linked to test cases
table. For each requirement artifact, the table shows the source file that contains the requirement
and whether the requirement is linked to at least one test case. When you click the Unlinked widget,
the table is filtered to show only requirements that are missing links to test cases.

Requirements with Disproportionate Numbers of Tests

The Tests per Requirement section summarizes the distribution of the number tests linked to each
requirement. For each value, a colored bin indicates the number of requirements that are linked to
that number of tests. Darker colors indicate more requirements. If a requirement has a too many
tests, the requirement might be too broad, and you may want to break it down into multiple more
granular requirements and link each of those requirements to the respective test cases. If a
requirement has too few tests, consider adding more test cases and linking them to the requirement.

To see the requirements that have a certain number of test cases, click the corresponding number to
open a filtered Test cases per requirement table. For each requirement artifact, the table shows
the source file that contains the requirement and the number of linked test cases. To see the results

for each of the requirements, in the Linked Test Cases column, click the filter icon , then
select Clear Filters.

5 Model Metrics

5-56

Tests Missing Requirements

In the Tests Linked to Requirements section, the Unlinked widget indicates how many tests are
not linked to requirements. To address unlinked tests, add links from these test cases to the
requirements they verify. The Tests with Requirements gauge widget shows the linking progress as
the percentage of tests that link to requirements.

Click any widget in the section to see detailed results in the Test case linked to requirements
table. For each test case artifact, the table shows the source file that contains the test and whether
the test case is linked to at least one requirement. When you click the Unlinked widget, the table is
filtered to show only test cases that are missing links to requirements.

Tests with Disproportionate Numbers of Requirements

The Requirements per Test widget summarizes the distribution of the number of requirements
linked to each test. For each value, a colored bin indicates the number of requirements that are
linked to that number of tests. Darker colors indicate more tests. If a test has too many or too few
requirements, it might be more difficult to investigate failures for that test, and you may want to
change the test or requirements so that they are easier to track. For example, if a test verifies many
more requirements than the other tests, consider breaking it down into multiple smaller tests and
linking them to the requirements.

To see the test cases that have a certain number of requirements, click the corresponding bin to open
the Requirements per test case table. For each test case artifact, the table shows the source file
that contains the test and the number of linked requirements. To see the results for each of the test

cases, in the Linked Requirements column, click the filter icon , then select Clear Filters.

Disproportionate Number of Tests of One Type

The Tests by Type and Tests with Tags widgets show how many tests the unit has of each type and
with each custom tag. In industry standards, tests are often categorized as normal tests or robustness
tests. You can tag test cases with Normal or Robustness and see the total count for each tag by
using the Tests with Tag widget. Use the Test Case Breakdown to decide if you want to add tests of
a certain type, or with a certain tag, to your project.

 Explore Status and Quality of Testing Activities Using the Model Testing Dashboard

5-57

To see the test cases of one type, click the corresponding row in the Tests by Type table to open the
Test case type table. For each test case artifact, the table shows the source file that contains the test
and the test type. To see results for each of the test cases, in the Type column, click the filter icon

, then select Clear Filters.

To see the test cases that have a tag, click the corresponding row in the Tests with Tag table to open
the Test case tags table. For each test case artifact, the table shows the source file that contains the
test and the tags on the test case. To see results for each of the test cases, in the Tags column, click

the filter icon , then select Clear Filters.

Analyze Test Results and Coverage

To see a summary of the test results and coverage measurements, use the widgets in the Simulation
Test Result Analysis section of the dashboard. Find issues in the tests and in the model by using the
test result metrics. Find coverage gaps by using the coverage metrics and add tests to address
missing coverage. Run the tests for the model and collect the dashboard metrics to check for model
testing issues.

Tests That Have Not Passed

In the Model Test Status section, the Untested and Disabled widgets indicate how many tests for
the unit have not been run. Run the tests by using the Simulink Test Manager and export the new
results.

The Failed widget indicates how many tests failed. Click on the Failed widget to view a table of the
test cases that failed. Click the hyperlink for each failed test case artifact to open it in the Test
Manager and investigate the artifacts that caused the failure. Fix the artifacts, re-run the tests, and
export the results.

5 Model Metrics

5-58

The Inconclusive widget indicates how many tests do not have pass/fail criteria such as verify
statements, custom criteria, baseline criteria, and logical or temporal assessments. If a test does not
contain pass/fail criteria, then it does not verify the functionality of the linked requirement. Add one
or more of these pass/fail criteria to your test cases to help verify the functionality of your model.

Click any widget in the section to open the Test case status table. For each test case artifact, the
table shows the source file that contains the test and the status of the test result. When you click the
Failed, Disabled, Untested, or Inconclusive widgets, the table is filtered to show only tests for
those test case result statuses. The dashboard analyzes only the latest test result that it traces to
each test case.

Missing Coverage

The Model Coverage widget shows whether there are model elements that are not covered by the
tests. If one of the coverage types shows less than 100% coverage, you can click the dashboard
widgets to investigate the coverage gaps. Add tests to cover the gaps or justify points that do not
need to be covered. Then run the tests again and export the results. For more information on
coverage justification, see “Fix Requirements-Based Testing Issues” on page 5-61.

 Explore Status and Quality of Testing Activities Using the Model Testing Dashboard

5-59

To see the detailed results for one type of coverage, click the corresponding bar. For the model and
test case artifacts, the table shows the source file and the achieved and justified coverage.

See Also
“Model Testing Metrics”

More About
• “Fix Requirements-Based Testing Issues” on page 5-61
• “Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard” on page 5-96

5 Model Metrics

5-60

Fix Requirements-Based Testing Issues
This example shows how to address common traceability issues in model requirements and tests by
using the Model Testing Dashboard. The dashboard analyzes the testing artifacts in a project and
reports metric data on quality and completeness measurements such as traceability and coverage,
which reflect guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C. The dashboard widgets summarize the data so that you can track your requirements-
based testing progress and fix the gaps that the dashboard highlights. You can click the widgets to
open tables with detailed information, where you can find and fix the testing artifacts that do not
meet the corresponding standards.

Collect Metrics for the Testing Artifacts in a Project

The dashboard displays testing data for a model and the artifacts that the unit traces to within a
project. For this example, open the project and collect metric data for the artifacts.

1 Open the project that contains the models and testing artifacts. For this example, in the
MATLAB® Command Window, enter dashboardCCProjectStart('incomplete').

2 Open the dashboard. To open the Model Testing Dashboard: on the Project tab, click Model
Testing Dashboard or enter modelTestingDashboard at the command line.

3 In the Artifacts panel, the dashboard organizes unit models under the component models that
contain them in the model hierarchy. Artifacts such as requirements, test cases, and test results
appear under the units that they trace to. View the metric results for the unit
db_DriverSwRequest. In the Artifacts panel, click the name of the unit,
db_DriverSwRequest. When you initially select db_DriverSwRequest, the dashboard collects
the metric results for uncollected metrics and populates the widgets with the data for the unit.

 Fix Requirements-Based Testing Issues

5-61

Link a Requirement to its Implementation in a Model

On the Artifacts panel, the Trace Issues folder shows artifacts that do not trace to unit models in
the project. The Trace Issues folder contains subfolders for:

• Unexpected Implementation Links — Requirement links of Type Implements for a
requirement of Type Container or Type Informational. The dashboard does not expect these
links to be of Type Implements because container requirements and informational requirements
do not contribute to the Implementation and Verification status of the requirement set that they
are in. If a requirement is not meant to be implemented, you can change the link type. For
example, you can change a requirement of Type Informational to have a link of Type Related
to.

• Unresolved and Unsupported Links — Requirement links which are broken or not supported by
the dashboard. For example, if a model block implements a requirement, but you delete the model
block, the requirement link is now unresolved. If a requirement links to or from a data dictionary,
the link is not supported and the Model Testing Dashboard does not trace the link. The Model
Testing Dashboard does not support traceability analysis for some artifacts and some links. If you
expect a link to trace to a unit and it does not, see the troubleshooting solutions in “Resolve
Missing Artifacts, Links, and Results in the Model Testing Dashboard” on page 5-96.

• Untraced Tests — Tests that execute on models or subsystems that are not on the project path.

5 Model Metrics

5-62

• Untraced Results — Results that the dashboard can no longer trace to a test case. For example,
if a test case produces results, but you delete the test case, the results can no longer be traced to
the test case.

Address Testing Traceability Issues

Open the dashboard for the unit db_DriverSwRequest by clicking the name of the unit in the
Artifacts panel. The widgets in the Test Case Analysis section of the dashboard show data about
the unit requirements, test cases for the unit, and links between them. The widgets indicate if there
are gaps in testing and traceability for the implemented requirements.

Link Requirements and Test Cases

For the unit db_DriverSwRequest, the Tests Linked to Requirements section shows that some of
the test cases are missing links to requirements in the model.

To see detailed information about the missing links, in the Tests Linked to Requirements section,
click the widget Unlinked. The dashboard opens the Metric Details for the widget with a table of
metric values and hyperlinks to each related artifact. The table shows the test cases that are
implemented in the unit, but do not have links to requirements. The table is filtered to show only test
cases that are missing links to requirements.

The test case Detect long decrement is missing linked requirements.

1 Open the test case in the Test Manager. In the Artifact column of the table, click Detect long
decrement. For this example, the test case needs to link to three requirements that already exist
in the project. If there were not already requirements, you could add a requirement by using the
Requirements Editor.

2 Open the software requirements in the Requirements Editor. In the Artifacts panel, expand the
folder db_DriverSwRequest > Functional Requirements > Implemented and double-click
the requirement file db_SoftwareReqs.slreqx.

3 View the software requirements in the container with the summary Driver Switch Request
Handling. Expand db_SoftwareReqs > Driver Switch Request Handling.

4 Select multiple software requirements. Hold down the Ctrl key as you click Output request
mode, Avoid repeating commands, and Long Increment/Decrement Switch recognition.
Keep these requirements selected in the Requirements Editor.

5 In the Test Manager, expand the Requirements section for the test case Detect long
decrement. Click the arrow next to the Add button and select Link to Selected Requirement.
The traceability link indicates that the test case Detect long decrement verifies the three
requirements Output request mode, Avoid repeating commands, and Long Increment/
Decrement Switch recognition.

6 The metric results in the dashboard reflect only the saved artifact files. To save the test suite
db_DriverSwRequest_Tests.mldatx, in the Test Browser, right-click
db_DriverSwRequest_Tests and click Save.

Refresh Metric Results in the Dashboard

 Fix Requirements-Based Testing Issues

5-63

The dashboard detects that the metric results are now stale and shows a warning banner at the top of
the dashboard.

1 Click the Collect button on the warning banner to re-collect the metric data so that the
dashboard reflects the traceability link between the test case and requirements.

2 View the updated dashboard widgets by returning to the Model Testing results. At the top of the
dashboard, there is a breadcrumb trail from the Metric Details back to the Model Testing
results. Click the breadcrumb button for db_DriverSwRequest to return to the Model Testing
results for the unit.

The Tests Linked to Requirements section shows that there are no unlinked tests. The
Requirements Linked to Tests section shows that there are 3 unlinked requirements. Typically,
before running the tests, you investigate and address these testing traceability issues by adding tests
and linking them to the requirements. For this example, leave the unlinked artifacts and continue to
the next step of running the tests.

Test the Model and Analyze Failures and Gaps

After you create and link unit tests that verify the requirements, run the tests to check that the
functionality of the model meets the requirements. To see a summary of the test results and coverage
measurements, use the widgets in the Simulation Test Result Analysis section of the dashboard.
The widgets help show testing failures and gaps. Use the metric results to analyze the underlying
artifacts and to address the issues.

Perform Unit Testing

Run the test cases for the model by using the Test Manager. Save the test results in your project and
review them in the Model Testing Dashboard.

1 Open the unit tests for the model in the Test Manager. In the Model Testing Dashboard, in the
Artifacts panel, expand the unit db_DriverSwRequest. Expand the Tests > Unit Tests folder
and double-click the test file db_DriverSwRequest_Tests.mldatx.

2 In the Test Manager, click Run.
3 Save the test results as a file in the project. On the Tests tab, in the Results section, click

Export. Name the results file Results1.mldatx and save the file under the project root folder.

5 Model Metrics

5-64

The Model Testing Dashboard detects that you exported the results and automatically updates the
Artifacts panel to include the new test results for the unit in the subfolder Test Results > Unit
Simulation.

The dashboard also detects that the metric results are now stale and shows a warning banner at the
top of the dashboard.

The Stale icon appears on the widgets in the Simulation Test Result Analysis
section to indicate that they are showing stale data that does not include the changes.

Click the Collect button on the warning banner to re-collect the metric data and to update the stale
widgets with data from the current artifacts. If you want to collect metrics for each of the units and
components in the project, click Collect > Collect All.

Address Testing Failures and Gaps

For the unit db_DriverSwRequest, the Model Test Status section of the dashboard indicates that
one test failed and one test was disabled during the latest test run.

1 To view the disabled test, in the dashboard, click the Disabled widget. The table shows the
disabled test cases for the model.

 Fix Requirements-Based Testing Issues

5-65

2 Open the disabled test in the Test Manager. In the table, click the test artifact Detect long
decrement.

3 Enable the test. In the Test Browser, right-click the test case and click Enabled.
4 Re-run the test. In the Test Browser, right-click the test case and click Run and save the test

suite file.
5 View the updated number of disabled tests. In the dashboard, click the Collect button on the

warning banner. Note that there are now zero disabled tests reported in the Model Test Status
section of the dashboard.

6 View the failed test in the dashboard. Click the breadcrumb button for db_DriverSwRequest to
return to the Model Testing results and click the Failed widget.

7 Open the failed test in the Test Manager. In the table, click the test artifact Detect set.
8 Examine the test failure in the Test Manager. You can determine if you need to update the test or

the model by using the test results and links to the model. For this example, instead of fixing the
failure, use the breadcrumbs to return to the Model Testing results and continue on to examine
test coverage.

Check if the tests that you ran fully exercised the model design by using the coverage metrics. For
this example, the Model Coverage section of the dashboard indicates that some conditions in the
model were not covered. Place your cursor over the Decision bar in the widget to see what percent
of condition coverage was achieved.

1 View details about the decision coverage by clicking one of the Decision bars. For this example,
click the Decision bar for Achieved coverage.

2 In the table, expand the model artifact. The table shows the test case results for the model and
the results files that contains them. For this example, click on the hyperlink to the source file
Results1.mldatx to open the results file in the Test Manager.

3 To see detailed coverage results, use the Test Manager to open the model in the Coverage
perspective. In the Test Manager, in the Aggregated Coverage Results section, in the
Analyzed Model column, click db_DriverSwRequest.

4 Coverage highlighting on the model shows the points that were not covered by the test cases. For
this example, do not fix the missing coverage. For a point that is not covered in your project, you
can add a test to cover it. You can find the requirement that is implemented by the model
element or, if there is none, add a requirement for it. Then you can link the new test case to the
requirement. If the point should not be covered, you can justify the missing coverage by using a
filter.

Once you have updated the unit tests to address failures and gaps in your project, run the tests and
save the results. Then examine the results by collecting the metrics in the dashboard.

Iterative Requirements-Based Testing with the Model Testing Dashboard

In a project with many artifacts and traceability connections, you can monitor the status of the design
and testing artifacts whenever there is a change to a file in the project. After you change an artifact,
use the dashboard to check if there are downstream testing impacts by updating the tracing data and
metric results. Use the Metric Details tables to find and fix the affected artifacts. Track your
progress by updating the dashboard widgets until they show that the model testing quality meets the
standards for the project.

See Also
“Model Testing Metrics”

5 Model Metrics

5-66

More About
• “Explore Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-

51
• “Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard” on page 5-96

 Fix Requirements-Based Testing Issues

5-67

Manage Requirements-Based Testing Artifacts for Analysis in
the Model Testing Dashboard

When you develop and test software units using Model-Based Design, use the Model Testing
Dashboard to assess the status and quality of your unit model testing activities. Requirements-based
testing is a central element of model verification. By establishing traceability links between your
requirements, model design elements, and test cases, you can measure the extent to which the
requirements are implemented and verified. The Model Testing Dashboard analyzes this traceability
information and provides detailed metric measurements on the traceability, status, and results of
these testing artifacts.

Each metric in the dashboard measures a different aspect of the quality of your unit testing and
reflects guidelines in industry-recognized software development standards, such as ISO 26262 and
DO-178C. To monitor the requirements-based testing quality of your models in the Model Testing
Dashboard, maintain your artifacts in a project and follow these considerations. For more information
on using the Model Testing Dashboard, see “Explore Status and Quality of Testing Activities Using the
Model Testing Dashboard” on page 5-51.

5 Model Metrics

5-68

Manage Artifact Files in a Project
To analyze your requirements-based testing activities in the Model Testing Dashboard, store your
design and testing artifacts in a MATLAB project. The artifacts that the testing metrics analyze
include:

• Models
• Libraries that the models use
• Requirements that you create in Requirements Toolbox
• Test cases that you create in Simulink Test
• Test results from the executed test cases

When your project contains many models and model reference hierarchies, you can track your unit
testing activities by configuring the dashboard to recognize the different testing levels of your
models. You can specify which entities in your software architecture are units or higher-level
components by labeling them in your project and configuring the Model Testing Dashboard to
recognize the labels. The dashboard organizes your models in the Artifacts panel according to their
testing levels and the model reference hierarchy. For more information, see “Categorize Models in a
Hierarchy as Components or Units” on page 5-90.

Trace Dependencies Between Project Files and Identify Outdated
Metric Results
When you use the Model Testing Dashboard, the dashboard creates a digital thread to capture the
attributes and unique identifiers of the artifacts in your project. The digital thread is a set of
metadata information about the artifacts in a project, the artifact structure, and the traceability
relationships between artifacts.

The Model Testing Dashboard monitors and analyzes the digital thread to:

• Detect when project files move and maintain the same universal unique identifiers (UUIDs) for the
artifact files and the elements inside the artifact files

• Capture traceability and listen to tools, such as the Test Manager in Simulink Test, to detect new
tool outputs and the dependencies of the tool operations

• Identify outdated tool outputs by analyzing the traceability and checksums of inputs to the tool
operations

• Create an index of your project and store a representation of each artifact, their inner structure,
and their relationships with other artifacts

• Provide a holistic analysis of your project artifacts to help you maintain traceability and up-to-date
information on the requirements, units, test cases, and results impacting your design

The dashboard can store the results of the digital thread analysis and then perform traceability
analysis across domains, tools, and artifacts, without needing to locally load or access the project
artifacts.

As you modify your models and testing artifacts, check that you save the changes to the artifacts files
and store the files that you want to analyze in your project.

 Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard

5-69

Trace Artifacts to Units for Model Testing Analysis
To determine which artifacts are in the scope of a unit, the Model Testing Dashboard analyzes the
traceability links between the artifacts and the software unit models in the project. The Artifacts
panel lists the units, organized by the components that reference them. Under each unit, the panel
shows these artifacts that trace to the unit:

• Functional Requirements
• Design Artifacts
• Tests
• Test Results

To see the traceability path that the dashboard found from an artifact to its unit, right-click the
artifact and click View trace to unit. A traceability graph opens in a new tab in the Model Testing
Dashboard. The graph shows the connections and intermediate artifacts that the dashboard traced
from the unit to the artifact. To see the type of traceability that connects two artifacts, place your
cursor over the arrow that connects the artifacts. The traceability relationship is either one artifact
containing the other or one artifact tracing to the other. For example, for the unit
db_DriverSwRequest, expand Functional Requirements > Upstream > db_SystemReqs.slreqx.
Right-click the requirement for Target speed increment and click View trace to unit. The trace
view shows that the unit db_DriverSwRequest traces to the implemented functional requirement
Switch precedence, which traces to the upstream functional requirement Target speed
increment.

5 Model Metrics

5-70

Under the list of components is the folder Trace Issues which contains unexpected requirement
links, requirements links which are broken or not supported by the dashboard, and artifacts that the
dashboard cannot trace to a unit. To help identify the type of tracing issue, the folder Trace Issues
contains subfolders for Unexpected Implementation Links, Unresolved and Unsupported
Links, Untraced Tests, and Untraced Results. For more information, see “Fix Requirements-Based
Testing Issues” on page 5-61.

If an artifact returns an error during traceability analysis, the panel includes the artifact in an Errors
folder. Use the traceability information in these sections and in the units to check if the testing
artifacts trace to the units that you expect. To see details about the warnings and errors that the
dashboard finds during artifact analysis, at the bottom of the Model Testing Dashboard dialog, click
Diagnostics.

As you edit and save the artifacts in your project, the dashboard tracks your changes and indicates if
the traceability data in the Artifacts panel might be stale by showing a warning banner. To update
the traceability data, click the Trace Artifacts button on the warning banner.

Functional Requirements

The folder Functional Requirements shows requirements of Type Functional that are either
implemented by or upstream of the unit.

When you collect metric results for a unit, the dashboard analyzes only functional requirements that
the unit directly implements. The folder Functional Requirements contains two subfolders to help
identify which requirements are implemented by the unit or are upstream of the unit:

 Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard

5-71

• Implemented — Functional requirements that are directly linked to the unit with a link Type of
Implements. The dashboard uses these requirements in the metrics for the unit.

• Upstream — Functional requirements that are indirectly or transitively linked to the implemented
requirements. The dashboard does not use these requirements in the metrics for the unit.

If a requirement does not trace to a unit, it appears in the “Trace Issues” folder. If a requirement does
not appear in the Artifacts panel when you expect it to, see “Requirement Missing from Artifacts
Panel” on page 5-97.

Use the Requirements Toolbox to create or import the requirements in a requirements file (.slreqx).

Design Artifacts

The folder Design shows:

• The model file that contains the block diagram for the unit.
• Models that the unit references.
• Libraries that are partially or fully used by the model.
• Data dictionaries that are linked to the model.

Tests

The folder Tests shows test cases and test harness that trace to the unit. This includes test cases that
run on the unit and test cases that run on subsystems in the unit model by using test harnesses.

When you collect metric results for a unit, the dashboard analyzes only test cases that run on the unit
model or unit model subsystems. The folder Tests contains subfolders to help identify which test
cases are testing the unit and which test harnesses trace to the unit:

• Unit Tests — Test cases that the dashboard considers as unit tests. A unit test directly tests either
the entire unit model or the model subsystems. The dashboard uses these tests in the metrics for
the unit.

• Others — Test cases that trace to the unit but that the dashboard does not consider as unit tests.
For example, the dashboard does not consider tests on a library to be unit tests. The dashboard
does not use these tests in the metrics for the unit.

• Test Harnesses — External test harnesses that trace to the unit or unit subsystems. Double-click
a test harness to open it.

If a test case does not trace to a unit, it appears in the “Trace Issues” folder. If a test case does not
appear in the Artifacts panel when you expect it to, see “Test Case Missing from Artifacts Panel” on
page 5-98. For troubleshooting test cases in metric results, see “Fix a test case that does not
produce metric results” on page 5-101.

Create test cases in a test suite file by using Simulink Test.

Test Results

When you collect metric results for a unit, the dashboard analyzes only the test results from unit
tests. The folder Test Results contains two subfolders to help identify which test results are from
unit tests:

• Unit Simulation — Simulation results from unit tests. The dashboard uses these results in the
metrics for the unit.

5 Model Metrics

5-72

The following types of test results are shown:

• Saved test results — results that you have collected in the Test Manager and have exported
to a results file.

• Temporary test results — results that you have collected in the Test Manager but have not
exported to a results file. When you export the results from the Test Manager the dashboard
analyzes the saved results instead of the temporary results. Additionally, the dashboard stops
recognizing the temporary results when you close the project or close the result set in the
Simulink Test Result Explorer. If you want to analyze the results in a subsequent test session or
project session, export the results to a results file.

• Others — Results that are not simulation results, are not from unit tests, or are only reports. For
example, SIL results are not simulation results. The dashboard does not use these results in the
metrics for the unit.

If a test result does not trace to a unit, it appears in the “Trace Issues” folder. If a test result does not
appear in the Artifacts panel when you expect it to, see “Test Result Missing from Artifacts Panel” on
page 5-98. For troubleshooting test results in dashboard metric results, see “Fix a test result that
does not produce metric results” on page 5-101.

Trace Issues

The folder Trace Issues shows artifacts that the dashboard has not traced to units. Use the folder
Trace Issues to check if artifacts are missing traceability to the units. The folder Trace Issues
contains subfolders to help identify the type of tracing issue:

• Unexpected Implementation Links — Requirement links of Type Implements for a
requirement of Type Container or Type Informational. The dashboard does not expect these
links to be of Type Implements because container requirements and informational requirements
do not contribute to the Implementation and Verification status of the requirement set that they
are in. If a requirement is not meant to be implemented, you can change the link type. For
example, you can change a requirement of Type Informational to have a link of Type Related
to.

• Unresolved and Unsupported Links — Requirements links that are either broken in the project
or not supported by the dashboard. For example:

• If a model block implements a requirement, but you delete the model block, the requirement
link is now unresolved.

• If a requirement links to or from a data dictionary, the link is not supported and the Model
Testing Dashboard does not trace the link.

The Model Testing Dashboard does not support traceability analysis for some artifacts and
some links. If you expect a link to trace to a unit and it does not, see the troubleshooting
solutions in “Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard” on
page 5-96.

• Untraced Tests — Tests that execute on models or subsystems that are not on the project path.
• Untraced Results — Results that the dashboard cannot trace to a test case. For example, if a test

case produces a result, but you delete the test case, the dashboard cannot trace the results to the
test case.

When you add traceability to an artifact, the dashboard detects this and shows a warning banner at
the top of the dashboard to indicate that the artifact traceability shown in the Artifacts panel is

 Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard

5-73

outdated. Click the Trace Artifacts button on the warning banner to refresh the data in the
Artifacts panel.

The Model Testing Dashboard does not support traceability analysis for some artifacts and some
links. If an artifact is untraced when you expect it to trace to a unit, see the troubleshooting solutions
in “Trace Issues” on page 5-99.

Artifact Errors

The folder Errors appears if artifacts returned errors when the dashboard performed artifact
analysis. These are some errors that artifacts might return during traceability analysis:

• An artifact returns an error if it has unsaved changes when traceability analysis starts.
• A test results file returns an error if it was saved in a previous version of Simulink.
• A model returns an error if it is not on the search path.

Open these artifacts and fix the errors. The dashboard detects changes to the artifacts and shows a
warning banner at the top of the dashboard to indicate that the artifact traceability shown in the
Artifacts panel is outdated. Click the Trace Artifacts button on the warning banner to refresh the
data in the Artifacts panel.

Diagnostics

To see details about artifacts that cause errors, warnings, and informational messages during
analysis, at the bottom of the Model Testing Dashboard dialog, click Diagnostics. You can filter the
diagnostic messages by their type: Error, Warning, and Info. You can also clear the messages from
the viewer.

The diagnostic messages show:

• Modeling constructs that the dashboard does not support
• Links that the dashboard does not trace
• Test harnesses or cases that the dashboard does not support
• Test results missing coverage or simulation results
• Artifacts that return errors when the dashboard loads them
• Information about model callbacks that the dashboard deactivates
• Files that have file shadowing or path traceability issues
• Artifacts that are not on the path and are not considered during tracing

Collect Metric Results
The Model Testing Dashboard collects metric results for each unit listed in the Artifacts panel. Each
metric in the dashboard measures a different aspect of the quality of your model testing and reflects
guidelines in industry-recognized software development standards, such as ISO 26262 and DO-178.
For more information about the available metrics and the results that they return, see “Model Testing
Metrics”.

As you edit and save the artifacts in your project, the dashboard detects changes to the artifacts and
shows a warning banner at the top of the dashboard to indicate that the artifact traceability shown in
the Artifacts panel is outdated. Click the Trace Artifacts button on the warning banner to refresh
the data in the Artifacts panel.

5 Model Metrics

5-74

After you update the traceability information, if the metric results might be affected by your artifact
changes, the dashboard shows a warning banner at the top of the dashboard to indicate that the

metric results are stale. Affected widgets have a gray staleness icon . To update the
results, click the Collect button on the warning banner to re-collect the metric data and to update
the stale widgets with data from the current artifacts. If you want to collect metrics for each of the
units and components in the project, click Collect > Collect All.

The dashboard does not indicate stale metric data for these changes:

• After you run a test case and analyze the results in the dashboard, if you make changes to the test
case, the dashboard indicates that test case metrics are stale but does not indicate that the results
metrics are stale.

• When you change a coverage filter file that your test results use, the coverage metrics in the
dashboard do not indicate stale data or include the changes. After you save the changes to the
filter file, re-run the tests and use the filter file for the new results.

See Also
“Model Testing Metrics”

Related Examples
• “Explore Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-

51
• “Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard” on page 5-96

 Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard

5-75

Assess the Completeness of Requirements-Based Testing in
Accordance with ISO 26262

You can use the Model Testing Dashboard to assess the quality and completeness of your
requirements-based testing activities in accordance with ISO 26262-6:2018. The dashboard facilitates
this activity by monitoring the traceability between requirements, tests, and test results and by
providing a summary of testing completeness and structural coverage. The dashboard analyzes the
implementation and verification artifacts in a project and provides:

• Completeness and quality metrics for the requirements-based test cases in accordance with ISO
26262-6:2018, Clause 9.4.3

• Completeness and quality metrics for the requirements-based test results in accordance with ISO
26262-6:2018, Clause 9.4.4

• A list of artifacts in the project, organized by the units

To assess the completeness of your requirements-based testing activities, follow these automated and
manual review steps using the Model Testing Dashboard.

Open the Model Testing Dashboard and Collect Metric Results
To analyze testing artifacts using the Model Testing Dashboard:

1 Open a project that contains your models and testing artifacts. Or to load an example project for
the dashboard, in the MATLAB Command Window, enter
dashboardCCProjectStart('incomplete').

2 Open the dashboard. To open the Model Testing Dashboard, use one of these approaches:

• On the Project tab, click Model Testing Dashboard.
• At the MATLAB command line, enter modelTestingDashboard.

If you have not previously opened the dashboard for the project, the dashboard performs a first-
time setup, identifying the artifacts in the project and collecting traceability information.

3 In the Artifacts panel, the dashboard organizes artifacts such as requirements, test cases, and
test results under the models that they trace to. To view the metric results for the unit
db_DriverSwRequest in the example project, in the Artifacts panel, click
db_DriverSwRequest. The dashboard collects metric results and populates the widgets with
the metric data for the unit. The dashboard automatically collects metric results when you click a
unit. To turn the automatic metric collection off, click Collect > Auto Collect.

Note If you do not specify the models that are considered units, then the Model Testing
Dashboard considers a model to be a unit if it does not reference other models. You can control
which models appear as units and components by labeling them in your project and configuring
the Model Testing Dashboard to recognize the labels. For more information, see “Specify Models
as Components and Units” on page 5-91.

5 Model Metrics

5-76

The dashboard widgets summarize the traceability and completeness measurements for the testing
artifacts for each unit. The metric results displayed with the red Non-Compliant overlay icon
indicate issues that you may need to address to complete requirements-based testing for the unit.
Results are compliant if they show full traceability, test completion, or model coverage. To see the
compliance thresholds for a metric, point to the overlay icon. To explore the data in more detail, click
an individual metric widget. For the selected metric, a table displays the artifacts and the metric
value for each artifact. The table provides hyperlinks to open the artifacts so that you can get detailed
metric results and fix the artifacts that have issues. For more information about using the Model
Testing Dashboard, see “Explore Status and Quality of Testing Activities Using the Model Testing
Dashboard” on page 5-51.

Test Case Review
To verify that a unit satisfies its requirements, you create test cases for the unit based on the
requirements. ISO 26262-6, Clause 9.4.3 requires that test cases for a unit are derived from the
requirements. When you create a test case for a requirement, you add a traceability link between the
test case and the requirement, as described in “Link Requirements to Tests” (Requirements Toolbox)
and in “Establish Requirements Traceability for Testing” (Simulink Test). Traceability allows you to
track which requirements have been verified by your tests and identify requirements that the model
does not satisfy. Clause 9.4.3 requires traceability between requirements and test cases, and review

 Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262

5-77

of the correctness and completeness of the test cases. To assess the correctness and completeness of
the test cases for a unit, use the metrics in the Test Case Analysis section of the Model Testing
Dashboard.

The following is an example checklist provided to aid in reviewing test case correctness and
completeness with respect to ISO 26262-6. For each question, perform the review activity using the
corresponding dashboard metric and apply the corresponding fix. This checklist is provided as an
example and should be reviewed and modified to meet your application needs.

Checklist Item Review Activity Dashboard Metric Fix
1 — Does each test case
trace to a requirement?

Check that 100% of the
test cases for the unit
are linked to
requirements by
viewing the widgets in
the Tests Linked to
Requirements section.

Tests Linked to
Requirements

Metric ID —
TestCaseWithRequir
ementPercentage

For more information,
see Test linked to
requirement
percentage.

For each unlinked test
case, add a link to the
requirement that the
test case verifies, as
described in “Fix
Requirements-Based
Testing Issues” on page
5-61.

2 — Does each test case
trace to the correct
requirements?

For each test case,
manually verify that the
requirement it is linked
to is correct. Click the
Tests with
Requirements widget
to view a table of the
test cases. To see the
requirements that a test
case traces to, in the
Artifacts column, click
the arrow to the left of
the test case name.

Tests Linked to
Requirements

Metric ID —
TestCaseWithRequir
ement

For more information,
see Test linked to
requirements.

For each link to an
incorrect requirement,
remove the link. If the
test case is missing a
link to the correct
requirement, add the
correct link.

3 — Do the test cases
cover all requirements?

Check that 100% of the
requirements for the
unit are linked to test
cases by viewing the
widgets in the
Requirements Linked
to Tests section.

Requirements Linked
to Tests

Metric ID —
RequirementWithTes
tCasePercentage

For more information,
see Percentage
requirements with test
cases.

For each unlinked
requirement, add a link
to the test case that
verifies it, as described
in “Fix Requirements-
Based Testing Issues”
on page 5-61.

5 Model Metrics

5-78

Checklist Item Review Activity Dashboard Metric Fix
4 — Do the test cases
define the expected
results including pass/
fail criteria?

Manually review the
test cases of each type.
Click the widgets in the
Tests by Type section
to view a table of the
test cases for each type:
Simulation,
Equivalence, and
Baseline. Open each
test case in the Test
Manager by using the
hyperlinks in the
Artifact column.
Baseline test cases must
define baseline criteria.
For simulation test
cases, review that each
test case defines pass/
fail criteria by using
assessments, as
described in “Assess
Simulation and
Compare Output Data”
(Simulink Test).

Tests by Type

Metric ID —
TestCaseType

For more information,
see Test case type.

For each test case that
does not define
expected results, click
the hyperlink in the
Artifact column to open
the test case in the Test
Manager, then add the
expected test definition
and pass/fail criteria.

5 — Does each test case
properly test the
requirement that it
traces to?

Manually review the
requirement links and
content for each test
case. Click the Tests
with Requirements
widget to view a table of
the test cases. To see
the requirements that a
test case traces to, in
the Artifact column,
click the arrow to the
left of the test case
name. Use the
hyperlinks to open the
test case and
requirement and review
that the test case
properly tests the
requirement.

Tests Linked to
Requirements

Metric ID —
TestCaseWithRequir
ement

For more information,
see Test linked to
requirements.

For each test case that
does not properly test
the requirement it
traces to, click the
hyperlink in the
Artifact column to open
the test case in the Test
Manager, then update
the test case.
Alternatively, add test
cases that further test
the requirement.

Test Results Review
After you run tests on a unit, you must review the results to check that the tests executed, passed,
and sufficiently tested the unit. Clause 9.4.4 in ISO 26262-6:2018 requires that you analyze the
coverage of requirements for each unit. Check that each of the test cases tested the intended model
and passed. Additionally, measure the coverage of the unit by collecting model coverage results in the

 Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262

5-79

tests. To assess the testing coverage of the requirements for the unit, use the metrics in the
Simulation Test Result Analysis section of the Model Testing Dashboard.

The following checklist is provided to facilitate test results analysis and review using the dashboard.
For each question, perform the review activity using the corresponding dashboard metric and apply
the corresponding fix. This checklist is provided as an example and should be reviewed and modified
to meet your application needs.

Checklist Item Review Activity Dashboard Metric Fix
1 — Does each test
result trace to a test
case?

Use only test results
that appear in the
dashboard. Test results
that do not trace to a
test case do not appear
in the dashboard. Click
a widget in the Model
Test Status section to
view a table of the test
cases and the results
that trace to them.

Model Test Status

Metric ID —
TestCaseStatusDist
ribution

For more information,
see Test case status
distribution.

Open the metric details
and click the hyperlink
in the Artifacts column
to open the test case in
the Test Manager. Re-
run the tests that the
results should trace to
and export the new
results.

2 — Does each test case
trace to a test result?

Check that zero test
cases are untested and
zero test cases are
disabled.

Model Test Status

Metric ID —
TestCaseStatusDist
ribution

For more information,
see Test case status
distribution.

For each disabled or
untested test case, in
the Test Manager,
enable and run the test.

3 — Have all test cases
been executed?

Check that zero test
cases are untested and
zero test cases are
disabled.

Model Test Status

Metric ID —
TestCaseStatusDist
ribution

For more information,
see Test case status
distribution.

For each disabled or
untested test case, in
the Test Manager,
enable, and run the test.

5 Model Metrics

5-80

Checklist Item Review Activity Dashboard Metric Fix
4 — Do all test cases
pass?

Check that 100% of the
test cases for the unit
passed.

Model Test Status >
Passed

Metric ID —
TestCaseStatusPerc
entage

For more information,
see Test case status
percentage.

For each test failure,
review the failure in the
Test Manager and fix
the corresponding test
case or design element
in the model.

5 — Do all test results
include coverage
results?

Manually review each
test result in the Test
Manager to check that
it includes coverage
results.

Not applicable For each test result that
does not include
coverage, open the test
case in the Test
Manager, and then
enable coverage
collection. Run the test
case again.

 Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262

5-81

Checklist Item Review Activity Dashboard Metric Fix
6 — Were the required
structural coverage
objectives achieved for
each unit?

Check that the tests
achieved 100% model
coverage for the
coverage types that
your unit testing
requires. To determine
the required coverage
types, consider the
safety level of your
software unit and use
table 9 in clause 9.4.4 of
ISO 26262-6:2018.

Model Coverage

Metric ID —
ExecutionCoverageB
reakdown

Metric ID —
ConditionCoverageB
reakdown

Metric ID —
DecisionCoverageBr
eakdown

Metric ID —
MCDCCoverageBreakd
own

For more information,
see:

• Justified and
achieved execution
coverage

• Justified and
achieved condition
coverage

• Justified and
achieved decision
coverage

• Justified and
achieved MC/DC
coverage

For each design element
that is not covered,
analyze to determine
the cause of the missed
coverage. Analysis can
reveal shortcomings in
tests, requirements, or
implementation. If
appropriate, add tests
to cover the element.
Alternatively, add a
justification filter that
justifies the missed
coverage, as described
in “Create, Edit, and
View Coverage Filter
Rules” (Simulink
Coverage).

5 Model Metrics

5-82

Checklist Item Review Activity Dashboard Metric Fix
7 — Have shortcomings
been acceptably
justified?

Manually review
coverage justifications.
Click a bar in the
Model Coverage
section to view a table
of the results for the
corresponding coverage
type. To open a test
result in the Test
Manager for further
review, click the
hyperlink in the
Artifacts column.

Model Coverage

Metric ID —
ExecutionCoverageB
reakdown

Metric ID —
ConditionCoverageB
reakdown

Metric ID —
DecisionCoverageBr
eakdown

Metric ID —
MCDCCoverageBreakd
own

For more information,
see:

• Justified and
achieved execution
coverage

• Justified and
achieved condition
coverage

• Justified and
achieved decision
coverage

• Justified and
achieved MC/DC
coverage

For each coverage gap
that is not acceptably
justified, update the
justification of missing
coverage. Alternatively,
add test cases to cover
the gap.

Unit Verification in Accordance with ISO 26262
The Model Testing Dashboard provides information about the quality and completeness of your unit
requirements-based testing activities. To comply with ISO 26262-6:2018, you must also test your
software at other architectural levels. ISO 26262-6:2018 describes compliance requirements for
these testing levels:

• Software unit testing in Table 7, method 1j
• Software integration testing in Table 10, method 1a
• Embedded software testing in Table 14, method 1a

The generic verification process detailed in ISO 26262-8:2018, clause 9 includes additional
information on how you can systematically achieve testing for each of these levels by using planning,
specification, execution, evaluation, and documentation of tests. This table shows how the Model

 Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262

5-83

Testing Dashboard applies to the requirements in ISO 26262-8:2018, clause 9 for the unit testing
level, and complementary activities required to perform to show compliance.

Requirement Compliance Argument Complementary Activities
9.4.1 — Scope of verification
activity

The Model Testing Dashboard
applies to all safety-related and
non-safety-related software
units.

Not applicable

9.4.2 — Verification methods The Model Testing Dashboard
provides a summary on the
completion of requirements-
based testing (Table 7, method
1j) including a view on test
results.

Where applicable, apply one or
more of these other verification
methods:

• Manual review and analysis
check list

• Applying other tools, such as
static code analysis, control
flow analysis, and data flow
analysis

• Developing extra tests, such
as interface tests, fault
injection tests, and back-to-
back comparisons

9.4.3 — Methods for deriving
test cases

The Model Testing Dashboard
provides several ways to
traverse the software unit
requirements and the relevant
tests, which helps you to derive
test cases from the
requirements.

You can also derive test cases by
using other tools, such as
Simulink Design Verifier.

9.4.4 — Requirement and
structural coverage

The Model Testing Dashboard
aids in showing:

• Completeness of
requirement coverage

• Branch/statement and MCDC
model coverage achieved by
testing

• A rationale for the
sufficiency of achieved
coverage

The dashboard provides
structural coverage only at the
model level. You can use other
tools to track the structural
coverage at the code level.

9.4.5 — Test environment The Model Testing Dashboard
aids in requirements-based
testing at the model level.

Apply back-to-back comparison
tests to verify that the behavior
of the model is equivalent to the
generated code.

References:

• ISO 26262-4:2018(en)Road vehicles — Functional safety — Part 4: Product development at the
system level, International Standardization Organization

5 Model Metrics

5-84

ISO 26262-6:2018(en)Road vehicles — Functional safety — Part 6: Product development at the
software level, International Standardization Organization

ISO 26262-8:2018(en)Road vehicles — Functional safety — Part 8: Supporting processes,
International Standardization Organization

See Also
“Model Testing Metrics”

Related Examples
• “Explore Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-

51
• “Fix Requirements-Based Testing Issues” on page 5-61

 Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262

5-85

Collect Metrics on Model Testing Artifacts Programmatically
This example shows how to programmatically assess the status and quality of requirements-based
testing activities in a project. When you develop software units by using Model-Based Design, you use
requirements-based testing to verify your models. You can assess the testing status of one unit model
by using the metric API to collect metric data on the traceability between requirements and test
cases and on the status of test results. The metrics measure characteristics of completeness and
quality of requirements-based testing that reflect industry standards such as ISO 26262 and DO-178.
After collecting metric results, you can access the results or export them to a file. By running a script
that collects these metrics, you can automatically analyze the testing status of your project to, for
example, design a continuous integration system. Use the results to monitor testing completeness or
to detect downstream testing impacts when you make changes to artifacts in the project.

Open the Project
Open a project that contains models and testing artifacts. For this example, in the MATLAB Command
Window, enter:

dashboardCCProjectStart('incomplete')

The project contains models and requirements and test cases for the models. Some of the
requirements have traceability links to the models and test cases, which help to verify that a model's
functionality meets the requirements.

Collect Metric Results
Create a metric.Engine object for the current project.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect pending artifact changes and to track the
test results.

updateArtifacts(metric_engine);

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of the metric identifiers used in the requirements-based version of the Model Testing Dashboard app.
For more information, see getAvailableMetricIds.

metric_Ids = getAvailableMetricIds(metric_engine,...
'App','DashboardApp',...
'Dashboard','RequirementsBasedModelUnitTesting');

For a list of model testing metrics and their identifiers, see “Model Testing Metrics”.

When you collect metric results, you can collect results for one unit at a time or for each unit in the
project.

Collect Results for One Unit

When you collect and view results for a unit, the metrics return data for the artifacts that trace to the
model.

Collect the metric results for the db_DriverSwRequest.

5 Model Metrics

5-86

Create an array that identifies the path to the model file in the project and the name of the model.
unit = {fullfile(pwd,'models','db_DriverSwRequest.slx'),'db_DriverSwRequest'};

Execute the engine and use 'ArtifactScope' to specify the unit for which you want to collect
results. The engine runs the metrics on only the artifacts that trace to the model that you specify.
Collecting results for these metrics requires a Simulink Test license, a Requirements Toolbox license,
and a Simulink Coverage license.

execute(metric_engine, metric_Ids, 'ArtifactScope', unit)

Collect Results for Each Unit in the Project

To collect the results for each unit in the project, execute the engine without the argument for
'ArtifactScope'.

execute(metric_engine, metric_Ids)

For more information on collecting metric results, see the function execute.

Access Results
Generate a report file that contains the results for all units in the project. For this example, specify
the HTML file format, use pwd to provide the path to the current folder, and name the report
'MetricResultsReport.html'.
reportLocation = fullfile(pwd, 'MetricResultsReport.html');
generateReport(metric_engine,'Type','html-file','Location',reportLocation);

Open the HTML report. The report is in the current folder, at the root of the project.

web('MetricResultsReport.html')

To open the table of contents and navigate to results for each unit, click the menu icon in the top-left
corner of the report. For each unit in the report, there is an artifact summary table that displays the
size and structure of that unit.

Saving the metric results in a report file allows you to access the results without opening the project
and the dashboard. Alternatively, you can open the Model Testing Dashboard to see the results and
explore the artifacts.
modelTestingDashboard

To access the results programmatically, use the getMetrics function. The function returns the
metric.Result objects that contain the result data for the specified unit and metrics. For this

 Collect Metrics on Model Testing Artifacts Programmatically

5-87

example, store the results for the metrics TestCaseStatus and
TestCasesPerRequirementDistribution in corresponding arrays.
results_TestCasesPerReqDist = getMetrics(metric_engine, 'TestCasesPerRequirementDistribution');
results_TestStatus = getMetrics(metric_engine, 'TestCaseStatus');

View Distribution of Test Case Links per Requirement

The metric TestCasesPerRequirementDistribution returns a distribution of the number of test
cases linked to each functional requirement for the unit. Use the disp function to display the bin
edges and bin counts of the distribution, which are fields in the Value field of the metric.Result
object. The left edge of each bin shows the number of test case links and the bin count shows the
number of requirements that are linked to that number of test cases. The sixth bin edge is
18446744073709551615, which is the upper limit of the count of test cases per requirement, which
shows that the fifth bin contains requirements that have four or more test cases.
disp(['Unit: ', results_TestCasesPerReqDist(1).Scope(1).Name])
disp([' Tests per Requirement: ', num2str(results_TestCasesPerReqDist(1).Value.BinEdges)])
disp([' Requirements: ', num2str(results_TestCasesPerReqDist(1).Value.BinCounts)])

Unit: db_DriverSwRequest
 Tests per Requirement: 0 1 2 3 4 18446744073709551615
 Requirements: 3 6 0 0 2

This result shows that for the unit db_DriverSwRequest there are 3 requirements that are not
linked to test cases, 6 requirements that are linked to one test case, and 2 requirements that are
linked to four or more test cases. Each requirement should be linked to at least one test case that
verifies that the model meets the requirement. The distribution also allows you to check if a
requirement has many more test cases than the other requirements, which might indicate that the
requirement is too general and that you should break it into more granular requirements.

View Test Case Status Results

The metric TestCaseStatus assesses the testing status of each test case for the unit and returns
one of these numeric results:

• 0 — Failed
• 1 — Passed
• 2 — Disabled
• 3 — Untested

Display the name and status of each test case.

for n=1:length(results_TestStatus)

 disp(['Test Case: ', results_TestStatus(n).Artifacts(1).Name])
 disp([' Status: ', num2str(results_TestStatus(n).Value)])

end

For this example, the tests have not been run, so each test case returns a status of 3.

See Also
“Model Testing Metrics” | metric.Engine | execute | generateReport |
getAvailableMetricIds | updateArtifacts

5 Model Metrics

5-88

Related Examples
• “Explore Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-

51
• “Test Model Against Requirements and Report Results” (Requirements Toolbox)
• “Perform Functional Testing and Analyze Test Coverage” (Simulink Test)

 Collect Metrics on Model Testing Artifacts Programmatically

5-89

Categorize Models in a Hierarchy as Components or Units
When testing your model-based software architecture, there are different testing requirements for
different levels of the architecture. The Model Testing Dashboard helps you to focus on the models
that require unit testing so you can assess their testing quality. You can use labels to classify the
models in your projects as units or components, then use the Model Testing Dashboard to see the
hierarchy and analyze the testing requirements for the units. For more information, see “Explore
Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-51.

Units in the Model Testing Dashboard
A unit is a functional entity in your software architecture that you can execute and test independently
or as part of larger system tests. Software development standards, such as ISO 26262-6, define
objectives for unit testing. Unit tests typically must cover each of the requirements for the unit and
must demonstrate traceability between the requirements, the test cases, and the unit. Unit tests must
also meet certain coverage objectives for the unit, such as modified condition/decision coverage.

You can label models as units in the Model Testing Dashboard. The dashboard then provides metric
results for each unit. If you do not specify the models that are considered units, then the dashboard
considers a model to be a unit if it does not reference other models.

In the Model Testing Dashboard, in the Artifacts panel, the unit dashboard icon indicates a unit.
If a unit is referenced by a component, it appears under the component. If a unit references one or
more other models, those models are part of the unit. The referenced models appear in the Design
folder under the unit and contribute to the metric results for the unit.

To specify which models are units, label them in your project and configure the dashboard to
recognize the label, as shown in “Specify Models as Components and Units” on page 5-91.

Components in the Model Testing Dashboard
A component is an entity that integrates multiple testable units together. For example:

• A model that references multiple unit models could be a component model.
• A System Composer™ architecture model could be a component. Supported architectures include

System Composer architecture models, System Composer software architecture models, and
AUTOSAR architectures.

• A component could also integrate other components.

5 Model Metrics

5-90

The Model Testing Dashboard organizes components and units under the components that reference
them in the Artifacts panel. The dashboard does not provide metric results for components because
components typically must meet different testing objectives than units.

If you do not specify the models that are considered components, then the dashboard considers a
model to be a component if it references one or more other models.

In the Model Testing Dashboard, in the Artifacts panel, the component icon indicates a
component. To see the units under a component, expand the component node by clicking the arrow
next to the component icon.

To specify the models that are considered components, label them in your project and configure the
dashboard to recognize the label, as shown in “Specify Models as Components and Units” on page 5-
91.

Specify Models as Components and Units
You can control which models appear as units and components by labeling them in your project and
configuring the Model Testing Dashboard to recognize the labels.

1 Open your project. For example, at the command line, type dashboardCCProjectStart. This
example project already has component and unit models configured.

2 In MATLAB, at the bottom left of the Project window, right-click in the Labels pane and click
Create New Category. Type a name for the category that will contain your testing architecture
labels, for example, Testing Interface and then click Create.

3 Create a label for the units. On the Labels pane, right-click the category that you created and
click Create New Label. Type the label name Software Unit and click OK.

4 Create another label for component models and name the label Software Component.

The unit and component labels appear under the category in the Labels pane.
5 Label the models in the project as components and units. In the project pane, right-click a model

and click Add label. In the dialog box, select the label and click OK. For this example, apply
these labels:

 Categorize Models in a Hierarchy as Components or Units

5-91

• db_Controller — Software Component
• db_ControlMode — Software Unit
• db_DriverSwRequest — Software Unit
• db_LightControl — Software Unit
• db_TargetSpeedThrottle — Software Unit

6 To open the Model Testing Dashboard, use one of these approaches:

• On the Project tab, in the Tools section, click Model Testing Dashboard.
• At the MATLAB command line, enter modelTestingDashboard.

7 In the Dashboard tab, click Options.
8 In the Project Options dialog box, in the Classification section, specify the category and labels

that you created for the components and units. For the component interface, set Category to
Testing Interface and Label to Software Component. For the unit interface, set Category
to Testing Interface and Label to Software Unit.

9 Click Apply. The dashboard updates the traceability information in the Artifacts panel and
organizes the models under the component models that reference them. If a model is not
referenced by a component, it appears at the top level with the components.

For each unit, the dashboard shows the artifacts that trace to the unit. To view the metric results for
a unit, click the unit name in the Artifacts panel. The dashboard shows the model testing metric
results for the unit that you select.

See Also

Related Examples
• “Create Labels”
• “Add Labels to Files”

5 Model Metrics

5-92

Include Subsystem-Level Test Results in the Model Testing
Dashboard

You can run subsystem-level tests and analyze the aggregated model coverage in the Model Testing
Dashboard. The dashboard metrics include test cases that you created on:

• Atomic subsystems
• Atomic subsystem references
• Atomic Stateflow® charts
• Atomic MATLAB® Function blocks
• Referenced models

This example shows how you can address gaps in your achieved coverage by using subsystem-level
tests.

Open the Dashboard for the Project

1. Open a project that contains models and testing artifacts. For this example, in the MATLAB
Command Window, enter:

dashboardCCProjectStart

2. Open the Model Testing Dashboard by using one of these approaches:

• On the Project tab, click Model Testing Dashboard.
• At the command line, enter:

modelTestingDashboard

The dashboard opens for the unit db_ControlMode.

Run Tests for the Unit and Identify Gaps in Model Coverage

Run tests on the whole unit and use the Model Testing Dashboard to collect the metric results for
model coverage.

1. Open the test cases associated with the unit db_ControlMode. In the Model Testing Dashboard, in
the Artifacts panel, expand the unit db_ControlMode. Expand the Tests > Unit Tests folder and
double-click the test file db_ControlMode_Tests.mldatx.

2. Expand the test file db_ControlMode_Tests.mldatx. The test file contains three test suites:

• Control Mode Unit Tests — Tests for the subsystem Control_Mode_StateMachine
• Target Speed Unit Tests — Tests for the subsystem Target_Speed_Calculator
• Combined Tests — Test for the unit db_ControlMode

3. Run the test suite Combined Tests. Right-click Combined Tests and click Run. The test suite
contains the test case Idle. Idle is a top-level test for the unit db_ControlMode. A top-level test is
a model test that tests the whole unit.

4. View the model coverage. In the dashboard, click the Collect button on the warning banner or
toolstrip to refresh the model coverage widgets.

 Include Subsystem-Level Test Results in the Model Testing Dashboard

5-93

5. View the achieved execution coverage for the unit. In the Model Coverage section, point to the
achieved coverage in the Execution bar.

Based on the results from the top-level test, the achieved execution coverage is 38.2%.

Use Subsystem-Level Testing to Address Gaps in Coverage

Run tests at the subsystem-level and use the Model Testing Dashboard to observe the increase in
model coverage.

1. In the Test Manager, click Test Browser.

2. Run the test suite Target Speed Unit Tests. Right-click Target Speed Unit Tests and click
Run.

3. In the Model Testing Dashboard, click the Collect button on the warning banner or toolstrip to
refresh the model coverage widgets. In the Model Coverage section, the aggregated model coverage
includes the results from the subsystem-level tests in Target Speed Unit Tests.

Note that you can only collect aggregated coverage for subsystem-level tests if you have previously
run a top-level test executed on the model. The dashboard cannot calculate aggregated coverage for
units that only have test results at the subsystem level because subsystem-level tests do not test the
whole unit. The top-level test must be executed on the model, not by SIL or PIL simulations on the
model code.

For this example, you could not calculate aggregated coverage without the test results from the test
suite Combined Tests. The test suites Control Mode Unit Tests and Target Speed Unit
Tests only contain subsystem-level tests and therefore do not test the whole unit.

4. View the achieved execution coverage for the unit. In the Model Coverage section, point to the
achieved coverage in the Execution bar.

Based on the results from the top-level and subsystem-level tests, the achieved execution coverage is
now 47.1%. The results from the subsystem-level tests in Target Speed Unit Tests increased the
achieved model coverage.

5 Model Metrics

5-94

The subsystem-level tests in test suites Control Mode Unit Tests and Target Speed Unit
Tests allow you to address the gaps in model coverage from the top-level tests.

If you run the test suite Control Mode Unit Tests, the unit db_ControlMode is able to achieve
100% execution, decision, and condition coverage.

See Also

Related Examples
• “Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262” on

page 5-76
• “Fix Requirements-Based Testing Issues” on page 5-61
• “Model Testing Metrics”

 Include Subsystem-Level Test Results in the Model Testing Dashboard

5-95

Resolve Missing Artifacts, Links, and Results in the Model
Testing Dashboard

Issue
The Model Testing Dashboard analyzes artifacts—models, requirements, tests, and results—that are
part of the requirements-based testing workflow for software unit models. If an artifact or a link
between artifacts is not part of the requirements-based testing workflow, it might not appear in the
Model Testing Dashboard or contribute to the analysis results. Additionally, some artifacts and links
are not supported by the Model Testing Dashboard. If you expect a link or artifact to appear in the
dashboard and it does not, try one of these solutions.

Possible Solutions
Try these solutions when you begin troubleshooting artifacts in the Model Testing Dashboard:

• Save changes to your artifact files.
• Check that your artifacts are saved in the project. The Model Testing Dashboard does not analyze
files that are not saved in the project.

• Check that your artifacts are not in a referenced project. The Model Testing Dashboard does not
analyze files in referenced projects.

• Check that your artifacts are on the MATLAB search path before you open the dashboard. When
you change the MATLAB search path, the traceability information in the Artifacts panel is not
updated. Do not change the search path while the dashboard is open.

• Open the “Diagnostics” on page 5-74 pane and address errors or warnings.
• Use the dashboard to re-trace the artifacts and re-collect metric results.

Depending on the type of artifact or analysis issue that you are troubleshooting, try one of these
solutions.

Enable Artifact Tracing for the Project

As you edit and save the artifacts in your project, the dashboard needs to track these changes to
enable artifact tracing and to detect stale results.

By default, the Model Testing Dashboard requests that you enable artifact tracing the first time you
open a project in the dashboard. Click Enable and Continue to allow the Model Testing Dashboard
to track tool outputs to detect outdated metric results.

The dashboard needs to track tool outputs, such as test results from Simulink Test, to detect outdated
metric results.

You can also enable artifact tracing from the Startup and Shutdown settings of the project. In the
Startup and Shutdown settings for your project, select Track tool outputs to detect outdated
results. For more information on the tool outputs and outdated metric results, see “Trace
Dependencies Between Project Files and Identify Outdated Metric Results” on page 5-69.

Project Requires Analysis by the Dashboard

The first time that you open the dashboard for the project, the dashboard identifies the artifacts in
the project and collects traceability information. The dashboard must perform this first-time setup to

5 Model Metrics

5-96

establish the traceability data before it can monitor the artifacts. If you cancel the first-time setup,
the artifacts in the project appear in the Unanalyzed folder in the Artifacts panel. To trace the
unanalyzed artifacts, click Collect > Trace Artifacts.

Incorrect List of Models in Artifacts Panel

The Artifacts panel shows the models in your project that are either unit models or component
models. Models are organized under the components that reference them, according to the model
reference hierarchy. If the list of unit and component models does not show the expected hierarchy of
your models, try one of these solutions.

Check that your unit and component models are labeled

Label the unit and component models in your project and configure the Model Testing Dashboard to
recognize the labeled models. Note that if a unit model references one or more other models, the
referenced models appear in the Design folder under the unit model. For more information about
labeling models and configuring the dashboard, see “Categorize Models in a Hierarchy as
Components or Units” on page 5-90. Check that if you have Observer models, they are not labeled as
units. The dashboard includes Observer models as units if they match the label requirements.

Check that your model was saved in a supported release

Check that your model was saved in R2012b or later. The Model Testing Dashboard does not support
models that were saved before R2012b.

Block Skipped During Artifact Analysis

If a block has a mask and the mask hides the content of the block, the dashboard excludes the block
from artifact analysis.

Check that your custom libraries do not contain blocks with self-modifiable masks. The Model Testing
Dashboard does not analyze blocks that contain self-modifiable masks. Self-modifiable masks can
change the structural content of a block, which is incompatible with artifact traceability analysis.

Library Missing from Artifacts Panel

Check that the library does not use a library forwarding table. The Model Testing Dashboard does not
support library forwarding tables.

Requirement Missing from Artifacts Panel

If a requirement is missing from the Artifacts panel, try one of these solutions.

Check that the requirement is a functional requirement

Verify that the requirement is configured as a functional requirement. In the Requirement Editor, on
the left pane, click the requirement. On the right pane, in the Properties section, set Type to
Functional. Because the Model Testing Dashboard reports on requirements-based unit testing, only
functional requirements appear in the Artifacts panel and are analyzed by the dashboard.

Check that the requirement is saved in a supported requirements file

Verify that the requirement is saved in a requirements file that has the .slreqx extension.

 Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard

5-97

Test Case Missing from Artifacts Panel

Check that the test case is supported by the Model Testing Dashboard. The Model Testing Dashboard
does not support MATLAB-based Simulink tests.

Test Harness Missing from Artifacts Panel

Check that the test harness is an external test harness. The Model Testing Dashboard does not show
internal test harnesses in the Artifacts panel. Note that the Model Testing Dashboard shows the test
cases from both internal and external test harnesses in the Tests folder.

Check that the test harness is not on a subsystem inside a library block instance. If a test harness is
on a subsystem inside a library block inside a model, the dashboard cannot perform artifact
traceability analysis on the test harness. The relationship between a model and a test harness on a
subsystem inside a library block instance is incompatible with artifact traceability analysis. To enable
artifact traceability analysis, move the test harness to the library.

Test Result Missing from Artifacts Panel

Check that either:

• The result is saved in a test results file. Save test results by exporting them from the Test
Manager.

• You collected the results during the current project session and have not closed them. When you
collect test results and do not export them, the dashboard recognizes the temporary results in the
Test Manager, denoted by the icon. The dashboard stops recognizing the temporary results
when you close the project, close the test results set, or export the test results to a results file.

Artifact Returns a Warning

Check the details of the warning by opening the Diagnostics pane.

Artifact Returns an Error

Check the details of the error by opening the Diagnostics pane.

If the dashboard returns an error in the Diagnostics pane, the metric data shown by the dashboard
widgets may be incomplete. Errors indicates that the dashboard may not have been able to properly
trace artifacts, analyze artifacts, or collect metrics.

Before using the metrics results shown in the dashboard, resolve any reported errors and retrace the
artifacts.
Fix ambiguous links

Check that the links in your project define unambiguous relationships between project artifacts.

In requirements-based testing, projects often contain links between software requirements and:

• the design artifacts that implement the requirements
• the test cases that test the implemented requirements
• the higher-level system requirements

The links in your project help to define the relationships between artifacts. The Model Testing
Dashboard uses a digital thread to capture the traceability relationships between the artifacts in your

5 Model Metrics

5-98

project. To maintain the traceability relationships, the dashboard returns an error when the links to
project artifacts are ambiguous. Ambiguous links are not supported in the dashboard.

If one of these conditions is met, the dashboard cannot establish unambiguous traceability:

• A link set shadows another loaded link set of the same name.
• A requirement set shadows another loaded requirement set of the same name.
• A link is not on the project path or is only temporarily on the project path.
• A link is not portable.

To avoid links that are not portable:

• Do not set the preference for a link path format to be an absolute path. Absolute paths are not
portable. For information on how to set the preference for the path format of links, see
rmipref and “Document Path Storage” (Requirements Toolbox).

• When you identify the source artifact of a link set, use the default link file name and location.
Link source remapping persists in the MATLAB preferences directory and is not portable. For
more information, see “Requirements Link Storage” (Requirements Toolbox).

Use the details and suggested actions in the dashboard error messages to fix the ambiguous links.

For more information on traceability relationships and the digital thread, see “Trace Dependencies
Between Project Files and Identify Outdated Metric Results” on page 5-69.

Trace Issues

If an artifact appears in the Trace Issues folder when you expect it to trace to a unit model,
depending on the type of artifact that is untraced, try one of these solutions.

Fix an untraced requirement

Check that the requirement traces to the unit model using an implementation link. The requirement
and its links must meet one of these criteria:

• The requirement is linked to the model or to a library subsystem used by the model with a link
where the Type is set to Implements.

• The requirement is the child of a container requirement that is linked to the model or to a library
subsystem used by the model with a link where the Type is set to Implements.

• The requirement traces to the model through a combination of the previous two criteria. For
example, a requirement that is under a container requirement that links to another requirement,
which links to the model.

Requirements-based testing verifies that your model fulfills the functional requirements that it
implements. Because the Model Testing Dashboard reports on requirements-based testing quality, it
analyzes only requirements that are specified as functional requirements and implemented in the
unit. For each unit, the dashboard shows the functional requirements that are implemented in the
unit in the folder Functional Requirements > Implemented.

Check that the requirement does not use an unsupported link. The Model Testing Dashboard does not
trace these links:

• Downstream links. The Model Testing Dashboard traces only links from lower-level requirements
to higher-level requirements. For each unit, the dashboard shows the higher-level functional

 Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard

5-99

requirements in the folder Functional Requirements > Upstream. Upstream links are directly
or transitively linked to the implemented functional requirements for the unit. Check the direction
of the link by using the Requirements Editor. In the Requirements Editor, in the Analysis section,
click Traceability Diagram. In the Impact Analysis section, use the buttons Upstream and
Downstream to check the direction of the links.

• Embedded links, which are requirements files that are saved directly in the model file.
• Links to requirements that are saved externally and linked using the Requirements Management

Interface (RMI).
• Links to and from data dictionaries.
• Links to MATLAB code files.
• Links to MATLAB Function blocks if you do not have a Stateflow license. Analyzing MATLAB

Function blocks requires a Stateflow license.
• Links to some Stateflow elements.
• Links in deprecated requirement files, which have the extension .req. To analyze requirement

links in the dashboard, save the links in an .slmx file or create them in the requirements file
(.slreqx) that has the requirements.

• Links to models for which the model file extension changed. If a requirement is linked to a model
with the file extension .slx, but the model file extension is changed to .mdl, the dashboard lists
the requirement link as unresolved. Modify the requirement link to reference the correct model
file and re-save the requirement link.

• Symbolic file links in a project, such as shortcuts.
• Links to modeling elements that are not supported by the Model Testing Dashboard, such as

library forwarding tables.

Fix an untraced requirement link set

Check that the requirement link set does not use the legacy Requirements Management Interface
(RMI) format. To allow the dashboard to analyze your requirement link set, pass your requirement
link set as the input argument to the function slreq.refreshSourceArtifactPath.
Fix an untraced design artifact

Check that the design artifact does not rely on a model callback to be linked with the model. The
Model Testing Dashboard does not execute model loading callbacks when it loads the models for
analysis. If a model relies on a callback to link a data dictionary, the data dictionary will not be linked
when the dashboard runs the traceability analysis.
Fix an untraced test case

Check that the test case runs on the model or runs on a subsystem in the model by using a test
harness.
Fix an untraced test result

Check that the project and test case are set up correctly and re-run your tests. If one of these
conditions is met when you run your test case, the generated results are untraced because the
dashboard cannot establish unambiguous traceability to the unit:

• No project is loaded.
• Artifact tracing is not enabled for the project. If artifact tracing is not enabled, the dashboard

cannot track changes or trace from the test cases to the generated test results. For more
information, see “Enable Artifact Tracing for the Project” on page 5-96.

5 Model Metrics

5-100

• You do not have a Simulink Check license.
• The test file is stored outside the project.
• The test file has unsaved changes.
• The tested model has unsaved changes.
• The test file returns an error during traceability analysis.
• The tested model returns an error during traceability analysis.
• The test result comes from a test case that is not supported by the Model Testing Dashboard, such

as a MATLAB-based Simulink test.

Check that the results and environment are set up correctly and re-export your test results. If one of
these conditions is met when you export your test results, the generated results are untraced because
the dashboard cannot establish unambiguous traceability to the unit:

• No project is loaded.
• Artifact tracing is not enabled for the project. For more information, see “Enable Artifact Tracing

for the Project” on page 5-96.
• You do not have a Simulink Check license.
• The test result file returns an error during traceability analysis.

Metric Does Not Report Results for Requirement, Test Case, or Test Result

If an artifact traces to one of your unit models but does not appear in the metric results for that unit,
depending on the type of artifact, try one of these solutions.

Fix a requirement that does not produce metric results

Check that the requirement directly links to the model with a link where the Type is set to
Implements. The dashboard metrics analyze only implemented functional requirements. For each
unit, the implemented functional requirements appear in the folder Functional Requirements >
Implemented. Upstream requirements appear in the folder Functional Requirements >
Upstream, but do not contribute to the metric results because upstream requirements are only
indirectly or transitively linked to the implemented requirements.

Fix a test case that does not produce metric results

Check that the test case directly tests either the entire unit model or the model subsystems. The
dashboard metrics analyze only unit tests. For each unit, the unit test cases appear in the folder
Tests > Unit Tests. Other test cases, that are not unit tests, appear in the folder Tests > Others, but
do not contribute to the metric results because other tests do not directly test the unit model or the
model subsystems. For example, the dashboard does not consider tests on a library to be unit tests.

Fix a test result that does not produce metric results

Check that the results meet these criteria:

• The results are the most recent results generated from the test cases.
• The results are from unit tests which appear in the folder Tests > Unit Tests. Test cases in the

folder Tests > Others do not contribute to the metric results.

If a test case includes multiple iterations, the metric results reflect the status of the whole test case
and do not show individual iteration results.

 Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard

5-101

For each unit, the test results that produce metric results appear in the folder Test Results > Unit
Simulation. The test results in the folder Test Results > Others do not contribute to the metric
results.

Fix a test that does not produce simulation test result analysis metric results

Check that the test case is a unit test and produces simulation results. For each unit, the metrics
analyze the test results in the folder Test Results > Unit Simulation. The test results in the folder
Test Results > Others are results that are not simulation results, are not from unit tests, or are only
reports. For example, SIL results are not simulation results. The metrics in the Simulation Test
Result Analysis section count results from only simulation tests, whereas the metrics in the Test
Case Analysis section count all unit tests.

If a test is not counted in the metrics in the Simulation Test Result Analysis section, check that the
test case meets these criteria for being a simulation test:

• The simulation mode is Normal, Accelerator, or Rapid Accelerator. If the test uses iterations to set
a different simulation mode after testing one of these modes, the test is still considered a
simulation test.

• The test is not a real-time test.
• If the test is an equivalence test, the first simulation meets one of the first two criteria.
• If the test contains multiple iterations, the test case or at least one iteration meets one of the first

two criteria.

Metric Result Shows a Missing Link or Artifact

The metric results do not count all types of traceability links. If a metric shows that a test case or
requirement is missing links when you expect it to be linked, try one of these solutions.

Fix a link that is not counted in traceability results

If there is a link between a requirement and a test case, but the traceability metrics show that the
test or requirement is unlinked, check if the link is supported by the dashboard metrics. The metrics
do not support these links:

• A requirement link to a justification. If a requirement is linked with a justification and not linked to
a test case, it appears as unlinked in the metric results.

• A requirement link to a test harness.

Fix missing model coverage in test results

If the model coverage metrics report coverage gaps that you do not expect, re-run the test cases and
re-collect the metric results for the new test results. The Model Testing Dashboard might show
coverage gaps if:

• You change the test results file or the coverage filter file after you collect the metrics, including if
you re-import the test results file after you make changes.

• You collect accumulated coverage results and make changes to the model file after running one or
more tests.

See Also
“Model Testing Metrics”

5 Model Metrics

5-102

Related Examples
• “Fix Requirements-Based Testing Issues” on page 5-61
• “Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard” on

page 5-68

 Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard

5-103

Collecting Requirements-Based Testing Metrics Using
Continuous Integration

Overview

Requirements-based testing metrics allow you to assess the status and quality of your requirements-
based testing activities. You can visualize the results by using the Model Testing Dashboard and
integrate metric collection by using continuous integration workflows. Continuous collection of these
metrics helps you to monitor the progression and quality of a project. This example uses GitLab® to
host the project source and Jenkins® to build and test the project as well as archive the results.

Requirements

• Use of MATLAB® projects
• Use of the Simulink Test Manager test harness

Set Up the Project in Source Control

GitLab Setup

Create a GitLab project for source-controlling your project. For more information, see https://
docs.gitlab.com/ee/index.html.

1 Install the Git Client.
2 Set up a branching workflow. Using GitLab, from the main branch, create a temporary branch for

implementing changes to the model files. Integration engineers can use Jenkins test results to
decide whether to merge a temporary branch into the main branch. For more information, see
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows.

3 Under Settings > Repository, protect the main branch by enforcing the use of merge requests
when developers want to merge their changes into the main branch.

4 Under Settings > Integrations, add a webhook to the URL of your Jenkins project. The
webhook triggers a build job on Jenkins.

Add the Project

This example uses the example project for the dashboard. To create a working copy of the project, at
the command line, enter:

dashboardCCProjectStart('incomplete')

Add all of the files in the project along with the files attached to this example to the main branch by
using Git™. These scripts are used to run tests and collect the metrics.

Derived Artifact Filtering

Collecting metrics generates files that you typically do not want checked into source control. Git
allows you to ignore files by adding filters to a text file named .gitignore located at the root
directory. You can add the sample .gitignore file attached to this example which will filter the files
generated by this example that do not need to be added to source control. For more information
on .gitignore files, see https://git-scm.com/docs/gitignore.

Set Up the Project in the Continuous Integration Tool

The continuous integration tool automates the building and testing of the project. Many different
tools can be used to automatically generate requirements-based testing results by following the same

5 Model Metrics

5-104

https://docs.gitlab.com/ee/index.html
https://docs.gitlab.com/ee/index.html
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
https://git-scm.com/docs/gitignore

general steps. In this example, use Jenkins as the automation tool. To run the example, you must
install the GitLab and MATLAB plugins for Jenkins.

Creating the Project

The CI tool will need integration to the source control repository of the project. The integration
allows the CI tool to listen to changes and access the project to build. Jenkins provides a Freestyle
project which serves as a generic template for projects which can work with any source control
management (SCM). In the Freestyle project, add the source control information to enable the SCM
to access the hosted project.

1 Click New Item, fill in the name, and choose Freestyle project. Or, for an existing Freestyle
Jenkins project, click Configure.

2 Click the Source Code Management tab and specify the URL of your GitLab repository in the
Repository URL field.

3 Click the Build Triggers tab and select Build when a change is pushed to GitLab.
4 Click the Build Environment tab, select Use MATLAB version, and provide the MATLAB root

to specify the MATLAB version for the build.

Building and Testing

The MATLAB plugin for Jenkins allows integration by specifying MATLAB commands as well as
configuring testing, bypassing the need to use the command line. In this example, a single build step
will be used to open the project, initialize the metrics infrastructure, run tests, and then collect
results.

In the Build section, select Add build step > Run MATLAB Command. In the Command field,
enter:

openProject(pwd);collectModelTestingResults();runTests();collectModelTestingResults();

Archiving and Consuming Metric Results

Metrics results can be archived during the build step and then reimported into MATLAB when you
want to review them. In this example, the result collection script stores the metric data in the
derived directory. Because some of the metrics rely on exported Simulink Test results, include the
exported .mldatx files in the archive.

To archive results for later review, configure the CI system to export these files:

• All files located in <project-root>/derived directory.
• All test results exported to <project-root>/testresults/.mldatx files.

For this example, use the Jenkins provided post-build action to archive artifacts produced during the
build.

Click the Post-build Actions tab and click Add post-build action. Choose Archive the artifacts.
Enter the path:

derived/**,testresults/*.mldatx

to archive all files saved to that directory.

Click the Save button to save and close the configuration.

 Collecting Requirements-Based Testing Metrics Using Continuous Integration

5-105

Running a Build Job in Jenkins

Jenkins is now configured to execute a new build job each time new changes to the project have been
committed to the GitLab repository. You can also manually run a build by clicking on Build Now in
the Jenkins project page.

Reviewing the Archived Results in MATLAB

Jenkins will store all the files generated and archived for each successful build and these can be
viewed individually or downloaded together in a single zip file. To view the results in MATLAB:

1 Get the version of the project that was used to generate the results from source control.
2 Get the archived metric results from the archived location.
3 Download and copy or extract the derived directory and all files into the root directory of the

project.
4 Download the archived, exported, Simulink Test results files and copy or extract these files.
5 Open the project in MATLAB and open the Model Testing Dashboard. The dashboard displays the

results generated from the CI build.

Alternative CI Integration Using Command Line

If you use a different automation tool, you can alternatively use the command line for testing
integration. Run the tests and collect metrics by running the appropriate commands through the
command line interface along using the -batch flag.

For example, when you use this command, MATLAB opens the project, initializes the model testing
results, runs all of the tests, collects the model metrics, and then shuts down.

matlab -c %LICENSE_PATH% -nosplash -logfile output.log -batch
"openProject(pwd);collectModelTestingResults();runTests();collectModelTestingResults(); exit;"

5 Model Metrics

5-106

Hide Requirements Metrics in the Model Testing Dashboard
and in API Results

If you do not want to track requirements metrics in the Model Testing Dashboard, or cannot because
of a missing Requirements Toolbox license, you can hide the requirements metrics. When you hide
the requirements metrics, the dashboard displays only the metrics in the Test Case Breakdown,
Model Test Status, and Model Coverage sections. This example shows how to hide the
requirements metrics when you use the Model Testing Dashboard or when you programmatically
collect metrics.

If you want to collect requirements-based metrics, see “Explore Status and Quality of Testing
Activities Using the Model Testing Dashboard” on page 5-51.

Open the Dashboard for the Project
1 Open a project that contains models and testing artifacts. For this example, at the MATLAB

command line, enter:

dashboardCCProjectStart
2 Open the Model Testing Dashboard by using one of these approaches:

• On the Project tab, click Model Testing Dashboard.
• At the command line, enter:

modelTestingDashboard

Hide Requirements Metrics in the Model Testing Dashboard
1 Open the Project Options dialog box by clicking Options.
2 In the Layout section, select Hide requirements metrics and click Apply.

Note Because the setting of the Hide requirements metrics property is saved in the project
data, the dashboard displays or hides requirements-based metrics for any users who view the
project.

The dashboard shows only the widgets for the Test Case Breakdown, Model Test Status, and
Model Coverage sections.

 Hide Requirements Metrics in the Model Testing Dashboard and in API Results

5-107

Hide Requirements Metrics in the API Results
You can also filter requirements metrics when you collect metric data by using the API.

1 Create a metric.Engine object for the current project.

metric_engine = metric.Engine();
2 Create a list of the metric identifiers that are not associated with requirements metrics. Use the

function getAvailableMetricIds and specify the 'App' as 'DashboardApp' and the
'Dashboard' as 'ModelUnitTesting'.

nonRequirementMetrics = getAvailableMetricIds(metric_engine,...
'App','DashboardApp',...
'Dashboard','ModelUnitTesting');

3 Collect the results for each unit in the project. Use the nonRequirementsMetrics argument to
exclude the requirements metrics from the results.

execute(metric_engine, nonRequirementMetrics);
4 Get the metric results for metric identifiers that are not associated with requirements metrics.

results = getMetrics(metric_engine, nonRequirementMetrics)

For more information about the metric API, see “Collect Metrics on Model Testing Artifacts
Programmatically” on page 5-86.

5 Model Metrics

5-108

See Also
metric.Engine | execute | getAvailableMetricIds | getMetrics

Related Examples
• “Collect Metrics on Model Testing Artifacts Programmatically” on page 5-86
• “Explore Status and Quality of Testing Activities Using the Model Testing Dashboard” on page 5-

51
• “Fix Requirements-Based Testing Issues” on page 5-61
• “Model Testing Metrics”

 Hide Requirements Metrics in the Model Testing Dashboard and in API Results

5-109

Create Model Advisor Checks

6

Overview of the Customization File for Custom Checks
A customization file is a MATLAB file that you create and name sl_customization.m. The
sl_customization.m file contains a set of functions for registering and defining custom checks,
tasks, and groups. To set up the sl_customization.m file, follow the guidelines in this table.

Function Description When Required
sl_customization() Registers custom checks, tasks,

folders, and callbacks with the
Simulink customization manager at
start-up. See “Define Custom Model
Advisor Checks” on page 6-45.

Required for programmatic
customizations to the Model
Advisor.

One or more check definitions Defines custom checks. See “Define
Custom Model Advisor Checks” on
page 6-45.

Required for custom checks and to
add custom checks to the By
Product folder.

If the By Product folder is not
displayed in the Model Advisor
window, select Show By Product
Folder from the Settings >
Preferences dialog box.

Check callback functions Defines the actions of the custom
checks. See “Define Custom Model
Advisor Checks” on page 6-45.

Required for custom checks. You
must write one callback function for
each custom check

One or more calls to check input
parameters

Specifies input parameters to
custom checks. See “Define Check
Input Parameters” on page 6-48.

Optional

One or more calls to checklist views Specifies calls to the Model Advisor
Result Explorer for custom checks.

Optional

One or more calls to check actions Specifies actions the software
performs for custom checks. See
“Define Custom Model Advisor
Checks” on page 6-45.

Optional

This example shows a custom configuration of the Model Advisor that has custom checks defined in
custom folders and procedures. The selected check includes input parameters, list view parameters,
and actions.

6 Create Model Advisor Checks

6-2

 Overview of the Customization File for Custom Checks

6-3

Common Utilities for Creating Checks
When you create a custom check, there are common Simulink utilities that you can use to make the
check perform different actions. Following is a list of utilities and when to use them. In the Utility
column, click the link for more information about the utility.

Utility Used For...
find_system Getting handle or path to:

• Blocks
• Lines
• Annotations

When getting the object, you can:

• Specify a search depth
• Search under masks and libraries

get_param / set_param Getting and setting system and block parameter
values.

Property Inspector Getting object properties. First you must get a
handle to the object.

evalin Working in the base workspace.
Simulink identifier (SID) Identifying Simulink blocks, model annotations or

Stateflow objects. The SID is a unique number
within the model, assigned by Simulink. For
details, see “Simulink Identifiers”.

Stateflow API (Stateflow) Programmatic access to Stateflow objects.

6 Create Model Advisor Checks

6-4

Review a Model Against Conditions that You Specify with the
Model Advisor

This example demonstrates how to create two simple check types: a pass/fail check with no fix action
and an informational check. A basic pass/fail check finds and reports what the check is reviewing and
whether the check passes or fails. An informational check finds and displays a description of what the
check is reviewing and any references to applicable standards.

Create an sl_customization Function
In your working folder, create the sl_customization.m file. To register the custom checks, within
the sl_customization.m file, create an sl_customization(cm) function as shown here. This
function accepts one argument, a customization object. This customization manager object includes
the addModelAdvisorCheckFcn method for registering the custom checks. The input to this
method is a handle to the function (defineModelAdvisorChecks) that contains calls to two check
definition functions. These functions contain the definitions of the simple pass/fail check and the
informational check.

function sl_customization(cm)
% SL_CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorCheck);

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorCheck
definePassFailCheck
defineInformationCheck

Create the Check Definition Function for a Pass/Fail Check with No Fix
Action
In this section, you create the check definition function that checks whether a Constant block value is
a number or a letter. If the value is a number, the check produces a warning. If the value is a letter,
the check passes.

This check uses the DetailStyle type of callback function. This style allows you to view results by
block, subsystem, or recommended action. Applying this style produces default formatting, so that
you do not have to use the ModelAdvisor.FormatTemplate class or the other Model Advisor
formatting APIs to format the results that appear in the Model Advisor. You specify this style as an
input to the setCallbackFcn method.

Create a new file, definePassFailCheck.m, and enter the function shown here:
function definePassFailCheck
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('simplePassFailCheck');
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Warn if Constant block value is a number; Pass if' ...
 ' Constant block value is a letter'];

 Review a Model Against Conditions that You Specify with the Model Advisor

6-5

rec.setCallbackFcn(@simplePassFailCheck,'None','DetailStyle')

mdladvRoot.publish(rec, 'Demo');

% --- Callback function that checks Constant blocks
function simplePassFailCheck(system,CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
violationBlks=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify Constant blocks with a value that is a number.';
 ElementResults.Status = 'All Constant blocks have a value that is a letter.';
 mdladvObj.setCheckResultStatus(true);
else
 for i=1:numel(violationBlks)
 ElementResults(1,i) = ModelAdvisor.ResultDetail;
 end
 for i=1:numel(ElementResults)
 ModelAdvisor.ResultDetail.setData(ElementResults(i),'SID',violationBlks{i});
 ElementResults(i).Description = 'Identify Constant blocks with a value that is a number.';
 ElementResults(i).Status = 'The following Constant blocks have values that are numbers:';
 ElementResults(i).RecAction = 'Change the Constant block value to a letter.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);

This check identifies Constant block values that are numbers and produces a warning, but it does not
provide a fix action. For more information on how to create a check definition function with a fix, see
“Fix a Model to Comply with Conditions that You Specify with the Model Advisor” on page 6-21.

Create the Check Definition Function for an Informational Check
In this section, you create a check definition function for an informational check that finds and
displays the model configuration and checksum information.

For an informational check, the Model Advisor displays the overall check status, but the status is not
in the result. In addition, an informational check does not include the following items in the results:

• A description of the status.
• The recommended action to take when the check does not pass.
• Subcheck results.

Create a new file, defineInformationCheck.m, and enter the function shown here:
function defineInformationCheck

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.infocheck');
rec.Title = 'Identify model configuration and checksum information';
rec.TitleTips = 'Display model configuration and checksum information';
rec.setCallbackFcn(@modelVersionChecksumCallbackUsingFT_Detail,'None','DetailStyle');

% Publish check into Demo group.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');

end

% -----------------------------
% This callback function uses the DetailStyle CallbackStyle type.
% -----------------------------

6 Create Model Advisor Checks

6-6

function modelVersionChecksumCallbackUsingFT_Detail(system,CheckObj)

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.Description = 'Display model configuration and checksum information';

% If running the Model Advisor on a subsystem, add note to description.
if strcmp(system, model) == false
 ElementResults.IsInformer = true;
 ElementResults.Status = 'NOTE: The Model Advisor is reviewing a subsystem, but these results are based on root-level settings.';
 ElementResults(end + 1) = ModelAdvisor.ResultDetail;
end

% If error is encountered, use these values.
mdlver = 'Error - could not retrieve Version';
mdlauthor = 'Error - could not retrieve Author';
mdldate = 'Error - could not retrieve Date';
mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information.
try
 mdlver = get_param(model,'ModelVersion');
 mdlauthor = get_param(model,'LastModifiedBy');
 mdldate = get_param(model,'LastModifiedDate');
 mdlsum = Simulink.BlockDiagram.getChecksum(model);
 mdlsum = [num2str(mdlsum(1)) ' ' num2str(mdlsum(2)) ' ' ...
 num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];
 ElementResults(end).IsInformer = true;
 mdladvObj.setCheckResultStatus(true);
catch
 ElementResults(end).IsViolation = true;
 mdladvObj.setCheckResultStatus(false);
end

lbStr ='
';
resultStr = ['Model Version: ' mdlver lbStr 'Author: ' mdlauthor lbStr ...
 'Date: ' mdldate lbStr 'Model Checksum: ' mdlsum];
ElementResults(end).Status = resultStr;
CheckObj.setResultDetails(ElementResults);

end

Run the Custom Checks in the Model Advisor
1 In the Command Window, enter:

Advisor.Manager.refresh_customizations

2 Open the model sldemo_fuelsys by typing this command in the MATLAB command prompt:

sldemo_fuelsys

3 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor dialog box
opens. Click OK.

4 In the left pane, select By Product > Demo > Identify model configuration and checksum
information.

5 Click Run Checks.

The check passes and displays the information.
6 In the left pane, select By Product > Demo > Check Constant block usage.
7 Click Run Checks.

 Review a Model Against Conditions that You Specify with the Model Advisor

6-7

The check produces a warning because several blocks contain values that are numbers. The
results contain links to these blocks. The result displays a Recommended Action.

8 Follow the Recommended Action to fix the Constant blocks.

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Check.CallbackContext

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Fix a Model to Comply with Conditions that You Specify with the Model Advisor” on page 6-21
• “Create and Deploy a Model Advisor Custom Configuration” on page 7-23

6 Create Model Advisor Checks

6-8

Define Edit-Time Checks to Comply with Conditions that You
Specify with the Model Advisor

In this example, you create three custom edit-time checks that check for compliance with certain
software design standards. Custom edit-time checks help you catch issues earlier in the model design
review process, but these checks also report issues in the Model Advisor.

The first check checks that Inport and Outport blocks have certain colors depending on their output
data types.

The second check checks whether a Trigger block is higher than other blocks in a subsystem. This
check must check edited blocks and other blocks in the same subsystem as the Trigger block.

The third check checks whether signals that connect to Outport blocks have labels.

Register and Define the Custom Edit-Time Checks
1 To register the custom edit-time check, create an sl_customization function. The

sl_customization function accepts one argument, a customization manager object. To
register the custom check, use the addModelAdvisorCheckFcn method. The input to this
method is a handle to the check definition function. For this example, defineCheck is the check
definition function. Create the sl_customization function and save it to your working folder.

function sl_customization(cm)
cm.addModelAdvisorCheckFcn(@defineCheck);

2 Create the check definition function. Inside the function, create three ModelAdvisor.Check
objects and specify the check IDs as input arguments. Then, specify the ModelAdvisor.Check
Title and CallbackHandle properties. The CallbackHandle property is the name of the
class that you create to define the edit-time check. For this example, MyEditTimeChecks is the
package name and PortColor, TriggerBlockPosition, and SignalLabel are the class
names. Then, publish the checks to a new folder in the Model Advisor. For this example, the
folder name is DEMO: Edit Time Checks. For this example, create a defineCheck function
and include the code below in it. Save the defineCheck function to your working folder.

function defineCheck

%% Check the background color of Inport and Outport blocks.
rec = ModelAdvisor.Check("advisor.edittimecheck.PortColor");
rec.Title = 'Check color of Inport and Outport blocks';
rec.CallbackHandle = 'MyEditTimeChecks.PortColor';
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec,'DEMO: Edit Time Checks');

%% Check that determines whether Trigger block is the top-most block in a subsystem.
rec= ModelAdvisor.Check("advisor.edittimecheck.TriggerBlock");
rec.Title = 'Check that Trigger block position is higher than other blocks';
rec.CallbackHandle = 'MyEditTimeChecks.TriggerBlockPosition';
mdladvRoot.publish(rec,'DEMO: Edit Time Checks');

%% Check that determines whether signals with SignalPropagation 'on' have labels.
rec = ModelAdvisor.Check("advisor.edittimecheck.SignalLabel");
rec.Title = 'Check that signals have labels if they are to propagate those labels';
rec.CallbackHandle = 'MyEditTimeChecks.SignalLabels';
mdladvRoot.publish(rec,'DEMO: Edit Time Checks');

 Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor

6-9

3 Create the first check by creating a class that derives from the ModelAdvisor.EdittimeCheck
abstract base class. For this example, create a class file named PortColor.m. Copy the code
below into the PortColor.m file. Then, create a folder named +MyEditTimeChecks and save
the PortColor.m file in that folder. Classes must be in a folder that has the same name as their
package name.

The PortColor class defines three methods: PortColor, blockDiscovered, and fix. The
PortColor method sets the CheckId and TraversalType properties. This check has a
traversal type of edittimecheck.TraversalTypes.BLKITER because the check must check
newly added and edited blocks, but it does not have to check for affected blocks in the same
subsystem or model as the edited or newly added blocks. The blockDiscovered method
contains an algorithm that checks the color of Inport and Outport blocks. Then, because the
violation is on a block, the algorithm highlights a violating block by creating a
ModelAdvisor.ResultDetail violation object with the Type property set to the default value
of SID. The fix method updates blocks that do not have correct colors.

Check that Import Blocks Have Certain Colors Class Definition
classdef PortColor < ModelAdvisor.EdittimeCheck
 % Check that ports conform to software design standards for background color.
 %
 % Background Color Data Types
 % orange Boolean
 % green all floating-point
 % cyan all integers
 % Light Blue Enumerations and Bus Objects
 % white auto
 %

 methods
 function obj=PortColor(checkId)
 obj=obj@ModelAdvisor.EdittimeCheck(checkId);
 obj.traversalType = edittimecheck.TraversalTypes.BLKITER;
 end

 function violation = blockDiscovered(obj, blk)
 violation = [];
 if strcmp(get_param(blk,'BlockType'),'Inport') || strcmp(get_param(blk,'BlockType'),'Outport')

 dataType = get_param(blk,'OutDataTypeStr');
 currentBgColor = get_param(blk,'BackgroundColor');

 if strcmp(dataType,'boolean')
 if ~strcmp(currentBgColor, 'orange')
 % Create a violation object using the ModelAdvisor.ResultDetail class.
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with Boolean outputs should be orange.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif any(strcmp({'single','double'},dataType))
 if ~strcmp(currentBgColor, 'green')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with floating-point outputs should be green.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif any(strcmp({'uint8','uint16','uint32','int8','int16','int32'}, dataType))
 if ~strcmp(currentBgColor, 'cyan')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with integer outputs should be cyan.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType,'Bus:')
 if ~strcmp(currentBgColor, 'lightBlue')

6 Create Model Advisor Checks

6-10

 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with bus outputs should be light blue.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType,'Enum:')
 if ~strcmp(currentBgColor, 'lightBlue')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with enumeration outputs should be light blue.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType, 'auto')
 if ~strcmp(currentBgColor, 'white')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with auto outputs should be white.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 end
 end
 end

 function violation = finishedTraversal(obj)
 violation = [];
 end

 function success = fix(obj, violation)
 success = true;
 dataType = get_param(violation.Data,'OutDataTypeStr');
 if strcmp(dataType,'boolean')
 set_param(violation.Data,'BackgroundColor','orange');
 elseif any(strcmp({'single','double'},dataType))
 set_param(violation.Data,'BackgroundColor','green');
 elseif any(strcmp({'uint8','uint16','uint32','int8','int16','int32'}, dataType))
 set_param(violation.Data,'BackgroundColor','cyan');
 elseif contains(dataType,'Bus:') || contains(dataType,'Enum:')
 set_param(violation.Data,'BackgroundColor','lightBlue');
 elseif contains(dataType,'auto')
 set_param(violation.Data,'BackgroundColor','white');
 end
 end
 end
end

4 Create a second check by creating another class that derives from the
ModelAdvisor.EdittimeCheck abstract base class. For this example, create a class file named
TriggerBlockPosition.m. Copy the code below into the TriggerBlockPosition.m file and
save it to the +MyEditTimeChecks folder.

The TriggerBlockPosition class defines three methods: TriggerBlockPosition,
blockDiscovered, and finishedTraversal. The TriggerBlockPosition method sets the
CheckId and TraversalType properties. This check has a traversal type of
edittimecheck.TraversalTypes.ACTIVEGRAPH because it must check other blocks in the
same subsystem as the Trigger block. The blockDiscovered method checks the position of
Trigger blocks within subsystems. The finishedTraversal method checks whether the
position of these Trigger blocks are higher than other blocks in a subsystem. Then, because the
violation is on a block, the algorithm highlights a violating block by creating a
ModelAdvisor.ResultDetail violation object with the Type property set to the default value
of SID.

Check the Position of Trigger Blocks Class Definition
classdef TriggerBlockPosition < ModelAdvisor.EdittimeCheck
 properties
 TriggerBlock = [];

 Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor

6-11

 position = [];
 end

 methods
 function obj=TriggerBlockPosition(checkId)
 obj=obj@ModelAdvisor.EdittimeCheck(checkId);
 obj.traversalType = edittimecheck.TraversalTypes.ACTIVEGRAPH;
 end

 function violation = blockDiscovered(obj, blk)
 violation = [];
 if strcmp(get_param(blk,'BlockType'),'TriggerPort')
 obj.TriggerBlock = blk;
 else
 h = get_param(blk,'Position');
 obj.position = [obj.position, h(2)];
 end
 end

 function violation = finishedTraversal(obj)
 violation = [];
 if isempty(obj.TriggerBlock)
 return;
 end
 triggerPosition = get_param(obj.TriggerBlock,'Position');
 if min(obj.position) < triggerPosition(2)
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',...
 Simulink.ID.getSID(obj.TriggerBlock));
 violation.CheckID = obj.checkId;
 violation.title = 'Trigger Block Position';
 violation.Description = 'Trigger Block should be top block in subsystem';
 violation.ViolationType = 'Warning';
 end
 obj.TriggerBlock = [];
 obj.position =[];
 end
 end
end

5 Create a third and final check by creating another class that derives from the
ModelAdvisor.EdittimeCheck abstract base class. For this example, create a class file named
SignalLabel.m. Copy the code below into the SignalLabel.m file and save it to the
+MyEditTimeChecks folder.

The SignalLabel class defines two methods: SignalLabel and blockDiscovered. The
SignalLabel method sets the CheckId and TraversalType properties. This check has a
traversal type of edittimecheck.TraversalTypes.BLKITER because the check must check
newly added and edited blocks, but it does not have to check for affected blocks in the same
subsystem or model as the edited or newly added blocks. Because this check is for signals, the
blockDiscovered method must use the parameters on the line handles, LineHandles, of
blocks to find signals with violations. Specifically, for signals that connect to Outport blocks, this
algorithm checks whether the Name signal parameter has a value. Then, because the violation is
on a signal, the algorithm highlights the signal by creating a violation object with the Type
property value set to Signal.

6 Create Model Advisor Checks

6-12

Check the Labels of Signals That Connect to Outport Blocks Class Definition
classdef SignalLabels < ModelAdvisor.EdittimeCheck
 methods
 function obj=SignalLabels(checkId)
 obj=obj@ModelAdvisor.EdittimeCheck(checkId);
 obj.traversalType = edittimecheck.TraversalTypes.BLKITER;
 end

 function violation = blockDiscovered(obj, blk)
 violation = [];
 ports = get_param(blk,'Ports');
 lh = get_param(blk, 'LineHandles');
 if strcmp(get_param(blk,'BlockType'),'Outport')
 for j = 1 : ports(1)
 if lh.Inport(j) ~= -1 % failure case: no connection
 allsources = get_param(lh.Inport(j),'SrcPortHandle');
 hiliteHandle = get_param(lh.Inport(j), 'DstPortHandle');
 if (isempty(allsources) ~= 0) || (isempty(find(allsources==-1,1)) ~= 0)
 lh_obj = get_param(lh.Inport(j),'Object');
 if isempty(lh_obj.Name)
 if strcmp(lh_obj.signalPropagation,'off') == 1
 allsources_parent = get_param(allsources,'Parent');
 if strcmp(get_param(allsources_parent,'BlockType'),'Inport')
 buscreator_outputs = get_param(allsources_parent,'IsBusElementPort');
 else
 buscreator_outputs = 'off';
 end
 if ~strcmp(buscreator_outputs,'on')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'Signal',hiliteHandle);
 violation.Description ='This signal should have a label.';
 violation.CheckID = obj.checkId;
 violation.Title = 'Signal Label Missing';
 end
 end
 end
 end
 end
 end
 end
 end
 end
end

Run the Edit-Time Checks on a Model
1 To use the checks, copy the AdvisorCustomizationExample.slx model to your current

working folder.

copyfile(fullfile(matlabroot,'examples','slcheck','main',...
'AdvisorCustomizationExample.slx'),'AdvisorCustomizationExample.slx','f');

2 Refresh the Model Advisor to update the cache with the new checks on the path.

Advisor.Manager.refresh_customizations
3 Open the Model Advisor Configuration Editor by entering this command at the command prompt:

Simulink.ModelAdvisor.openConfigUI;

If a model is open, you can also open the editor by clicking the Modeling tab and selecting
Model Advisor > Configuration Editor.

4 Create a custom configuration consisting of the three custom edit-time checks by deleting every
folder except for the DEMO: Edit Time Checks folder.

5 Save the configuration as my_config.json.

 Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor

6-13

6 When prompted to set this configuration as the default, click No.
7 Close the Model Advisor Configuration Editor.
8 Open the model by entering this command at the command prompt.

open_system('AdvisorCustomizationExample.slx');

9 Set the custom configuration to the my_config.json file by clicking the Modeling tab and
selecting Model Advisor > Edit-Time Checks. In the Configuration Parameters dialog box,
specify the path to the configuration file in the Model Advisor configuration file parameter.
Alternatively, enter this command at the command prompt:
ModelAdvisor.setModelConfiguration('AdvisorCustomizationExample', 'my_config.json');

10 Turn on edit-time checking by clicking the Modeling tab and selecting Model Advisor > Edit-
Time Checks. In the Configuration Parameters dialog box, select the Edit-Time Checks
parameter. Alternatively, you can enter this command at the command prompt:

edittime.setAdvisorChecking('AdvisorCustomizationExample','on');
11 Open the Model Advisor by clicking the Modeling tab and selecting Model Advisor. Observe

that the three edit-time checks are the only ones in the Model Advisor. Close the Model Advisor.
12 To view the edit-time warnings, click the blocks and signals highlighted in yellow.

6 Create Model Advisor Checks

6-14

At the top level of the model, the two Inport blocks have an output data type of int32. They
produce edit-time warnings because they should be cyan. The Outport block does not produce a
violation because it has an auto data type and is white.

In the Amplifier subsystem, the Inport and Outport blocks do not produce edit-time warnings
because they have a data type of auto and are white. The Trigger block does not produce an
edit-time warning because it is the top-most block in the model. If you move the Trigger block
below another block, the Trigger block has an edit-time warning.

The signal connecting to the Outport block produces a warning because it does not have a label.
13 To fix the edit-time warnings for the two Inport blocks, in the edit-time check warning window,

click Fix.

Performance Considerations for Custom Edit-Time Checks
To help prevent custom edit-time checks from negatively impacting performance as you edit your
model, the Model Advisor automatically disables custom edit-time checks if, in the current MATLAB
session, the check takes longer than 500 milliseconds to execute in at least three different Simulink
models.

If the Model Advisor disables a custom edit-time check, you will see a warning on the Simulink
canvas. You can re-enable the edit-time check by either:

• Clicking the hyperlink text in the warning.
• Passing the check identifier, checkID, to the function editime.enableCheck:

edittime.enableCheck(checkID)

To prevent a custom edit-time check from being disabled, author the check so that the check executes
in less than 500 milliseconds on your models.

 Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor

6-15

See Also
ModelAdvisor.EdittimeCheck | ModelAdvisor.Check | ModelAdvisor.ResultDetail

Related Examples
• “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor”

on page 6-9
• “Define Custom Model Advisor Checks” on page 6-45
• “Define Custom Edit-Time Checks that Fix Issues in Architecture Models” on page 6-17

6 Create Model Advisor Checks

6-16

Define Custom Edit-Time Checks that Fix Issues in Architecture
Models

This example shows how to create a custom edit-time check that runs on architecture models that you
create using System Composer. Edit-time checks help you catch issues earlier in the model design
review process. The custom edit-time check in this example produces a warning if the names of
connecting block port interface names do not match. For more information on the process for
authoring custom checks, see “Define Custom Model Advisor Checks” on page 6-45.

Create a Simple Architecture Model
Create a simple architecture model with mismatched data interface names in ports that share a
connector.

1 Create a temporary working directory.
2 In MATLAB, on the Home tab, click Simulink.
3 In the Simulink Start page, click System Composer and select Architecture Model.
4 Add three Component blocks.
5 Connect the outport of one Component block to the inport ports of the other two Component

blocks as shown in this image.

6 On the Modeling tab, click Interface Editor.
7 Create two data interfaces with the names interface0 and interface1.
8 Open the Property Inspector.
9 For Component, click the OutBus port. In the Interface section of the Property Inspector, for

the Name field, select interface0.
10 For Component1, click the InBus port. In the Interface section of the Property Inspector, for

the Name field, select interface1.
11 For Component2, click the InBus port. In the Interface section of the Property Inspector, for

the Name field, select interface0.

 Define Custom Edit-Time Checks that Fix Issues in Architecture Models

6-17

12 Save the model to your working directory. For this example, the model name is myModel.slx.

Create the Custom Edit-Time Check
Create a check that detects the mismatched data interface names in ports that share the same
connector while a user is editing a model.

1 To register the custom edit-time check, create an sl_customization function. The
sl_customization function accepts one argument, a customization manager object. To
register the custom check, use the addModelAdvisorCheckFcn method. The input to this
method is a handle to the check definition function. For this example, defineCheck is the check
definition function. Create the sl_customization function and save it to your working folder.

function sl_customization(cm)
cm.addModelAdvisorCheckFcn(@defineCheck);

2 Create the check definition function. Inside the function, create a ModelAdvisor.Check object
and specify the Check ID as an input argument. Then, specify the ModelAdvisor.Check Title
and CallbackHandle properties. The CallbackHandle property is the name of the class that
you create to define the edit-time check. For this example, MyEditTimeChecks is the package
name and PortMismatch is the class name. Then, publish the check to a new folder in the
Model Advisor. For this example, the folder name is System Composer Edit-time Check. For
this example, create a defineCheck function and include the code below in it. Save the
defineCheck function to your working folder.
function defineCheck
rec = ModelAdvisor.Check("advisor.edittimecheck.SystemComposerPortMismatch");
rec.Title = 'Check port mismatch for system composer components';
rec.CallbackHandle = 'MyEditTimeChecks.PortMismatch';
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec,'System Composer Edit-time Check');
end

3 Create a class that derives from the ModelAdvisor.EdittimeCheck abstract base class. For
this example, create a class file named PortMismatch. Copy the code below into the
PortMismatch.m file. Then, create a folder named +MyEditTimeChecks and save the
PortMismatch.m file in that folder. The class must be in a folder that has the same name as the
package name.

The PortMismatch class defines two methods: PortMismatch and blockDiscovered. The
PortMismatch method sets the CheckId and TraversalType properties. This check has a
traversal type of edittimecheck.TraversalTypes.ACTIVEGRAPH because the check must
check newly added and edited blocks and affected blocks in the same subsystem or model. The
blockDiscovered method contains an algorithm that checks whether the port interface names
match.
classdef PortMismatch < ModelAdvisor.EdittimeCheck

 methods
 function obj=PortMismatch(checkId)
 obj=obj@ModelAdvisor.EdittimeCheck(checkId);
 obj.traversalType = edittimecheck.TraversalTypes.ACTIVEGRAPH;
 end

 function violationArray = blockDiscovered(obj,blk)
 violationArray = [];
 blkHdl = get_param(blk, 'Handle');
 archMdl = systemcomposer.arch.Model(bdroot(blk));
 comp = archMdl.lookup('SimulinkHandle',blkHdl);
 if isa(comp, 'systemcomposer.arch.Component')
 for i = 1:length(comp.Ports)

6 Create Model Advisor Checks

6-18

 compPort = comp.Ports(i);
 if strcmp(compPort.Direction, 'Output')
 srcInterfaceName = compPort.InterfaceName;
 for j = 1:length(compPort.Connectors)
 connector = compPort.Connectors(j);
 destPort = connector.DestinationPort;
 destInterfaceName = destPort.InterfaceName;
 if(~strcmpi(srcInterfaceName, destInterfaceName))
 hiliteHandle = destPort.SimulinkHandle;
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation, 'Signal',hiliteHandle);
 violation.CheckID = obj.checkId;
 violation.Description = 'Connected port interface names should be the same.';
 violation.Title = 'Port Interface Mismatch';
 violation.ViolationType = 'warn';
 violationArray = [violationArray violation]; %#ok<AGROW>
 end
 end
 end
 end
 else
 compPort = comp;
 if strcmp(compPort.Direction, 'Output')
 srcInterfaceName = compPort.InterfaceName;
 for j = 1:length(compPort.Connectors)
 connector = compPort.Connectors(j);
 destPort = connector.DestinationPort;
 destInterfaceName = destPort.InterfaceName;
 if(~strcmpi(srcInterfaceName, destInterfaceName))
 hiliteHandle = destPort.SimulinkHandle;
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'Signal',hiliteHandle);
 violation.CheckID = obj.checkId;
 violation.Description = 'Connected port interface names should be the same.';
 violation.Title = 'Port Interface Mismatch';
 violation.ViolationType = 'warn';
 violationArray = [violationArray violation]; %#ok<AGROW>
 end
 end
 end
 end
 end
 end
end

Create a Custom Edit-Time Check Configuration
Create a custom configuration consisting of the edit-time check. Associate the configuration with the
myModel.slx model.

1 Refresh the Model Advisor to update the cache with the new check on the path.

Advisor.Manager.refresh_customizations
2 Open the Model Advisor Configuration Editor by clicking the Modeling tab and selecting Model

Advisor > Configuration Editor or by entering this command at the command prompt:

Simulink.ModelAdvisor.openConfigUI;
3 Create a custom configuration that consists only of the custom edit-time check. Select the

Product > System Composer Edit-time Checksfolder and then delete the other folders. Save
the configuration as sc_config.json. Close the Model Advisor Configuration Editor.

4 Set the custom configuration to the sc_config.json file by clicking the Modeling tab and
selecting Model Advisor > Edit-Time Checks. In the Configuration Parameters dialog box that
opens, specify the path to the configuration file in the Model Advisor configuration file
parameter. Alternatively, enter this command at the command prompt:

 Define Custom Edit-Time Checks that Fix Issues in Architecture Models

6-19

ModelAdvisor.setModelConfiguration('myModel', 'sc_config.json');

5 Turn on edit-time checking by selecting the Model Advisor > Edit Time configuration
parameter. Alternatively, you can enter this command at the command prompt:

edittime.setAdvisorChecking('myModel','on');
6 To view the edit-time warnings, click the signal highlighted in yellow.

The connector between the Component and Component1 blocks produces a warning because
the data interface names in each port do not match.

See Also
ModelAdvisor.EdittimeCheck | ModelAdvisor.Check | ModelAdvisor.ResultDetail

Related Examples
• “Define Custom Model Advisor Checks” on page 6-45
• “Run Custom Model Advisor Checks on Architecture Models” on page 3-106
• “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor”

on page 6-9

6 Create Model Advisor Checks

6-20

Fix a Model to Comply with Conditions that You Specify with
the Model Advisor

This example shows how to create a customized Model Advisor pass/fail check with a fix action. When
a model does not contain a check violation, the results contain the check description and result
status. When a model contains a check violation, the results contain the check description, result
status, and the recommended action to fix the issue. This example adds a custom check to a Model
Advisor By Product > Demo subfolder.

For this example, the custom check identifies blocks whose names do not appear below the blocks.
The fix action is to make the block names appear below the blocks.

When a check does not pass, the results include a hyperlink to each model element that violates the
check. Use these hyperlinks to easily locate areas in your model or subsystem. The code for this
example consists of an sl_customization.m file and a defineDetailStyleCheck.m file.

Create the sl_customization File
1 In your working folder, create an sl_customization.m file.
2 To register the custom checks, create an sl_customization(cm) function as shown here. This

function accepts one argument, a customization manager object. The customization manager
object includes the addModelAdvisorCheckFcn method for registering the custom check. The
input to this method is a handle to the function defineModelAdvisorChecks.
defineModelAdvisorChecks contains a call to the check definition function for custom Model
Advisor pass/fail check.

function sl_customization(cm)
% SL_CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorChecks
 defineDetailStyleCheck;

Create the Check Definition File
The check definition function defines the check and fix actions that the Model Advisor takes when you
run the check. For this example, the completed check definition function file is
defineDetailStyleCheck.m, and it contains this code:
function defineDetailStyleCheck

mdladvRoot = ModelAdvisor.Root;

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');

 Fix a Model to Comply with Conditions that You Specify with the Model Advisor

6-21

% Create ModelAdvisor.Action object for setting fix operation.
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@ActionCB);
myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks';
rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

end

% -----------------------------
% This callback function uses the DetailStyle CallbackStyle type.
% -----------------------------
function DetailStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% Find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below the block.';
 mdladvObj.setCheckResultStatus(true);
else
 for i=1:numel(violationBlks)
 ElementResults(1,i) = ModelAdvisor.ResultDetail;
 end
 for i=1:numel(ElementResults)
 ModelAdvisor.ResultDetail.setData(ElementResults(i), 'SID',violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);
end

% -----------------------------
% This action callback function changes the location of block names.
% -----------------------------
function result = ActionCB(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);
end

The following steps explain how to create the defineDetailStyleCheck.m file.

1 Create a ModelAdvisor.Root object.

mdladvRoot = ModelAdvisor.Root;

2 Create a ModelAdvisor.Check object and define the unique check ID. For this check, the ID is
com.mathworks.sample.detailStyle.

rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');

6 Create Model Advisor Checks

6-22

3 Specify the ModelAdvisor.Check.Title and ModelAdvisor.Check.TitleTips properties.
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';

4 Use the setCallbackFcn method to call the callback function. The setCallbackFcn method
arguments are a handle to the callback function and the
ModelAdvisor.Check.CallbackStyle property value. For this example, the CallbackStyle
property value is DetailStyle. This style allows you to view results by block, subsystem, or
recommended action. Applying this style produces default formatting, so that you do not have to
use the ModelAdvisor.FormatTemplate class or the other Model Advisor formatting APIs to
format the results that appear in the Model Advisor.
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');

5 To set the fix operation, create a ModelAdvisor.Action object and define its properties. Use
the setCallback method to call the action callback function. The input to this method is a
handle to the action callback function.
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@ActionCB);
myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks';

6 Use the setAction method to set the action for the check.

rec.setAction(myAction);
7 Use the publish method to publish the check to a folder within the By Product folder. For this

example, the folder name is Demo.

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

Create the Check Callback Definition Function

1 In the defineDetailStyleCheck.m file, create the check callback function. In this example,
the function name is DetailStyleCallback. The inputs to this function are a
ModelAdvisor.CheckObject and the path to the model or system that the Model Advisor
analyzes.

function DetailStyleCallback(system, CheckObj)
2 To create a Simulink.ModelAdvisor object, use the function

Simulink.ModelAdvisor.getModelAdvisor.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
3 To identify blocks that violate the check, use the find_system function. For each model

element, this function creates a ModelAdvisor.ResultDetail object.

violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');

4 Write code for the case when the find_system function does not identify blocks whose names
do not appear below the block. In this case, ElementResults is one instance of a
ModelAdvisor.ResultDetail object and provides information content only. The method
specifies that there is no check violation and displays Passed in the Model Advisor.
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below the block.';
 mdladvObj.setCheckResultStatus(true);

 Fix a Model to Comply with Conditions that You Specify with the Model Advisor

6-23

5 Write code for the case when the find_system function returns a list of blocks whose names do
not appear below the block (violationBlks). ElementResults includes each
ModelAdvisor.ResultDetail object that violates the check and provides a recommended
action message for fixing the check violation.

For this case, the setCheckResultStatus method specifies the check violation and displays
Warning or Failed in the Model Advisor. The
Simulink.ModelAdvisor.setActionEnable(true) method enables the ability to fix the
check violation issue from the Model Advisor.
else
 for i=1:numel(violationBlks)
 ElementResults(1,i) = ModelAdvisor.ResultDetail;
 end
 for i=1:numel(ElementResults)
 ModelAdvisor.ResultDetail.setData(ElementResults(i), 'SID',violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
 end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
end

6 To associate the results with a check object, use the setResultDetails method.

CheckObj.setResultDetails(ElementResults);
end

Create the Action Callback Definition Function

1 In the defineDetailStyleCheck.m file, create the action callback function. In this example,
the function name is sampleActionCB. The input to this function is a ModelAdvisor.Task
object.

function result = ActionCB(taskobj)
2 Create handles to Simulink.ModelAdvisor and ModelAdvisor.Check objects.

mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;

3 Create an array of ModelAdvisor.ResultDetail objects for storing the information for blocks
that violate the check.

resultDetailObjs = checkObj.ResultDetails;
4 Write code that changes the block name location to below the block.

for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end
result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');

5 Disable the Action box.

mdladvObj.setActionEnable(false);

Run the Check
1 Save the sl_customization.m and defineDetailStyleCheck.m files.

6 Create Model Advisor Checks

6-24

2 In the MATLAB command window, enter:

Advisor.Manager.refresh_customizations
3 Open the model sldemo_fuelsys by typing this command in the MATLAB command prompt:

sldemo_fuelsys
4 In the top model, select the block named Engine Speed. In the toolstrip, on the Format tab,

click Flip Name.
5 Open the fuel_rate_control subsystem. Select the block named validate_sample_time.

In the toolstrip, on the Format tab, click Flip Name.

Return to the top model and save as example_sldemo_fuelsys.
6 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor dialog box

opens. Click OK. The Model Advisor opens.
7 In the left pane, select By Product > Demo > Check whether block names appear below

blocks.
8 Select Run Checks. The Model Advisor check produces a warning for the blocks that you

changed.
9 Review the results by selecting either the Report or Result Detail tabs.

Both tabs provide a recommended action for each block that violates the check. You can click the
hyperlink path to open the block in the model editor. For example:

 Fix a Model to Comply with Conditions that You Specify with the Model Advisor

6-25

10 Follow the recommended action for fixing the violating blocks by using one of these methods:

• Update each violation individually by double-clicking the hyperlink to open the block. Select
the block. In the toolstrip, on the Format tab, select Flip Name.

• In the toolstrip, click Fix. The Model Advisor automatically fixes the issues in the model.
Notice that the button is dimmed after the violations are fixed.

11 Rerun the Model Advisor check. The check passes.

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.FormatTemplate |
ModelAdvisor.Check.CallbackContext | Simulink.ModelAdvisor |
Simulink.ModelAdvisor.getModelAdvisor | Simulink.ModelAdvisor.openConfigUI |
Simulink.ModelAdvisor.reportExists

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Review a Model Against Conditions that You Specify with the Model Advisor” on page 6-5
• “Create and Deploy a Model Advisor Custom Configuration” on page 7-23

6 Create Model Advisor Checks

6-26

Create Model Advisor Check for Model Configuration
Parameters

To verify the configuration parameters for your model, you can create a configuration parameter
check.

Decide which configuration parameter settings to use for your model. If desired, review the modelling
guidelines:

• MathWorks Advisory Board (MAB) Modeling Guidelines
• High-Integrity System Modeling Guidelines
• Code Generation Modeling Guidelines

1 Create an XML data file containing the configuration parameter settings you want to check. You
can use Advisor.authoring.generateConfigurationParameterDataFile or manually
create the file yourself.

2 Register the model configuration parameter check using an sl_customization.m file.
3 Run the check on your models.

Create a Data File for a Configuration Parameter Check
This example shows how to create a data file that specifies configuration parameter values in the
Diagnostics pane. A custom check warns when the configuration parameters values do not match
the values defined in the data file.

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the Diagnostics
pane, set the configuration parameters as follows:

• Algebraic loop to none
• Minimize algebraic loop to error
• Block Priority Violation to error

Use the Advisor.authoring.generateConfigurationParameterDataFile function to create a
data file specifying configuration parameter constraints in the Diagnostics pane. Also, to create a
check with a fix action, set FixValue to true. At the command prompt, type:
model='vdp';
dataFileName = 'ex_DataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(dataFileName,...
model, 'Pane', 'Diagnostics', 'FixValues', true);

In the Command Window, select ex_DataFile.xml. The data file opens in the MATLAB editor.

• The Minimize algebraic loop (ArtificialAlgebraicLoopMsg) configuration parameter
tagging specifies a value of error with a fixvalue of error. When you run the configuration
parameter check using ex_DataFile.xml, the check fails if the Minimize algebraic loop
setting is not error. The check fix action modifies the setting to error.

• The Block Priority Violation (BlockPriorityViolationMsg) configuration parameter tagging
specifies a value of error with a fixvalue of error. When you run the configuration
parameter check using ex_DataFile.xml, the check fails if the Block Priority Violation
setting is not error. The check fix action modifies the setting to error.

 Create Model Advisor Check for Model Configuration Parameters

6-27

matlab: vdp

In ex_DataFile.xml, edit the Algebraic loop (AlgebraicLoopMsg) parameter tagging so that the
check warns if the value is none. Because you are specifying a configuration parameter that you do
not want, you need a NegativeModelParameterConstraint. Also, to create a subcheck that does
not have a fix action, remove the line with <fixvalue> tagging. The tagging for the configuration
parameter looks as follows:

<!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>

In ex_DataFile.xml, delete the lines with tagging for configuration parameters that you do not
want to check. The data file ex_DataFile.xml provides tagging only for Algebraic loop, Minimize
algebraic loop, and Block Priority Violation. For example, ex_DataFile.xml looks similar to:

<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
 <checkdata>
 <!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>
 <!--Minimize algebraic loop: (ArtificialAlgebraicLoopMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>ArtificialAlgebraicLoopMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
 <!--Block priority violation: (BlockPriorityViolationMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>BlockPriorityViolationMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
 </checkdata>
</customcheck>

Verify the data syntax with Advisor.authoring.DataFile.validate. At the command prompt,
type:

dataFile = 'ex_DataFile.xml';
msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)
 disp('Data file passed the XSD schema validation.');
else

6 Create Model Advisor Checks

6-28

 disp(msg);
end

Create Check for Diagnostics Pane Model Configuration Parameters
This example shows how to create a check for Diagnostics pane model configuration parameters
using a data file and an sl_customization.m file. First, you register the check using an
sl_customization.m file. Using ex_DataFile.xml, the check warns when:

• Algebraic loop is set to none
• Minimize algebraic loop is not set to error
• Block Priority Violation is not set to error

The check fix action modifies the Minimize algebraic loop and Block Priority Violation parameter
settings to error.

The check uses the ex_DataFile.xml data file created in “Create a Data File for a Configuration
Parameter Check” on page 6-27.

Close the Model Advisor and your model if either are open.

Use the following sl_customization.m file to specify and register check Example: Check model
configuration parameters.
function sl_customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

%% defineModelAdvisorChecks
function defineModelAdvisorChecks

 rec = ModelAdvisor.Check('com.mathworks.Check1');
 rec.Title = 'Example: Check model configuration parameters';
 rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
 rec.TitleTips = 'Example check for model configuration parameters';

 % --- data file input parameters
 rec.setInputParametersLayoutGrid([1 1]);
 inputParam1 = ModelAdvisor.InputParameter;
 inputParam1.Name = 'Data File';
 inputParam1.Value = 'ex_DataFile.xml';
 inputParam1.Type = 'String';
 inputParam1.Description = 'Name or full path of XML data file.';
 inputParam1.setRowSpan([1 1]);
 inputParam1.setColSpan([1 1]);
 rec.setInputParameters({inputParam1});

 % -- set fix operation
 act = ModelAdvisor.Action;
 act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback...
 (task)));
 act.Name = 'Modify Settings';
 act.Description = 'Modify model configuration settings.';
 rec.setAction(act);

 mdladvRoot = ModelAdvisor.Root;
 mdladvRoot.publish(rec,'Demo');

Note that model configuration parameter settings checks must use the setCallbackFcn type of
StyleOne.

 Create Model Advisor Check for Model Configuration Parameters

6-29

Create the Example: Check model configuration parameters. At the command prompt, enter:

Advisor.Manager.refresh_customizations

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the Diagnostics
pane, set the configuration parameters as follows:

• Algebraic loop to none
• Minimize algebraic loop to warning
• Block Priority Violation to warning

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select DemoExample: Check model configuration parameters. In the right pane,
Data File is set to ex_DataFile.xml.

Click Run Checks. The Model Advisor check warns that the configuration parameters are not set to
the values specified in ex_DataFile.xml. For configuration parameters with positive constraint
tagging (PositiveModelParameterConstraint), the recommended values are obtained from the
value tagging. For configuration parameters with negative constraint tagging
(NegativeModelParameterConstraint), the values not recommended are obtained from the
value tagging.

• Algebraic loop(AlgebraicLoopMsg) - the ex_DataFile.xml tagging does not specify a fix
action for AlgebraicLoopMsg. The subcheck passes only when the setting is not set to none.

• Minimize algebraic loop(ArtificialAlgebraicLoopMsg) - the ex_DataFile.xml tagging
specifies a subcheck with a fix action for ArtificialAlgebraicLoopMsg that passes only when
the setting is error. The fix action modifies the setting to error.

• Block priority violation(BlockPriorityViolationMsg) - the ex_DataFile.xml tagging
specifies a subcheck with a fix action for BlockPriorityViolationMsg that does not pass when
the setting is warning. The fix action modifies the setting to error.

In the toolstrip, click Fix. The Model Advisor updates the configuration parameters for Block
priority violation and Minimize algebraic loop.

Run the Demo > Example: Check model configuration parameters check again. The check
warns because Algebraic loop is set to none.

In the right pane of the Model Advisor window, use the Algebraic loop (AlgebraicLoopMsg)
link to edit the configuration parameter. Set Algebraic loop to warning or error.

Run the check a final time. The check passes.

Data File for Configuration Parameter Check
You use an XML data file to create a configuration parameter check. To create the data file, you can
use Advisor.authoring.generateConfigurationParameterDataFile or manually create the
file yourself. The data file contains tagging that specifies check behavior. Each model configuration
parameter specified in the data file is a subcheck. The structure for the data file is as follows:
<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 Create Model Advisor Checks

6-30

matlab: vdp

xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
 <messages>
 <Description>Description of check</Description>
 <PassMessage>Pass message</PassMessage>
 <FailMessage>Fail message</FailMessage>
 <RecommendedActions>Recommended action</RecommendedActions>
 </messages>
 <checkdata>
 <!--Command line name of configuration parameter-->
 <PositiveModelParameterConstraint>
 <parameter>Command-line name of configuration parameter</parameter>
 <value>Value that you want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </PositiveModelParameterConstraint>
 <!-- Command line name of configuration parameter-->
 <NegativeModelParameterConstraint>
 <parameter>Command line name of configuration parameter</parameter>
 <value>Value that you do not want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </NegativeModelParameterConstraint>
 </checkdata>
</customcheck>

The <messages> tag contains:

• Description - (Optional) Description of the check. Displayed in Model Advisor window.
• PassMessage - (Optional) Pass message displayed in Model Advisor window.
• FailMessage - (Optional) Fail message displayed in Model Advisor window.
• RecommendedActions - (Optional) Recommended actions displayed in Model Advisor window

when check does not pass.

Note The <messages> tag is optional.
Advisor.authoring.generateConfigurationParameterDataFile does not generate
<messages> tagging.

In the <checkdata> tag, the data file specifies two types of constraints:

• PositiveModelParameterConstraint - Specifies the configuration parameter setting that you
want.

• NegativeModelParameterConstraint - Specifies the configuration parameter setting that you
do not want.

Within the tag for each of the two types of constraints, for each configuration parameter that you
want to check, the data file has the following tags:

• parameter - Specifies the configuration parameter that you want to check. The tagging uses the
command line name for the configuration parameter. For example:

<PositiveModelParameterConstraint>
 <parameter>BlockPriorityViolationMsg</parameter>
</PositiveModelParameterConstraint>
<NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
</NegativeModelParameterConstraint>

 Create Model Advisor Check for Model Configuration Parameters

6-31

• value - Specifies the setting(s) for the configuration parameter. You can specify more than one
value tag.

When using PositiveModelParameterConstraint, value specifies the setting(s) that you
want for the configuration parameter. For NegativeModelParameterConstraint, value
specifies the setting(s) you that do not want for the configuration parameter.

You can specify the value using a format in this table.

Type Format Example
Scalar value <value>xyz</value> In this example, constraint

NegativeModelParameterConstraint
warns when the configuration parameter
settings for configuration parameter is not
error or none.

<NegativeModelParameterConstraint>
 <value>error</value>
 <value>none</value>
</NegativeModelParameterConstraint>

Structure or
object

<value>
 <param1>xyz</param1>
 <param2>yza</param2>
</value>

In this example, constraints
PositiveModelParameterConstraint
warns when the configuration parameter
settings are not a valid structure:

<PositiveModelParameterConstraint>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
</PositiveModelParameterConstraint>

Array <value>
 <element>value</element>
 <element>value</element>
</value>

In this example, constraint
NegativeModelParameterConstraint
warns when the configuration parameter
settings are an invalid array:

<NegativeModelParameterConstraint>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
</NegativeModelParameterConstraint>

6 Create Model Advisor Checks

6-32

Type Format Example
Structure
Array

<value>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
</value>

In this example, constraint
NegativeModelParameterConstraint
warns when the configuration parameter
settings are an invalid structure array:

<NegativeModelParameterConstraint>
 <value>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 </value>
</NegativeModelParameterConstraint>

• fixvalue - (Optional) Specifies the setting to use when applying the Model Advisor fix action.

You can specify the fixvalue using a format in this table.

Type Format Example
Scalar value <fixvalue>xyz</fixvalue> In this example, the fix action tag specifies the

new configuration parameter setting as
warning.

<PositiveModelParameterConstraint>
 <value>error</value>
 <fixaction>warning</fixaction>
</PositiveModelParameterConstraint>

Structure or
object

<fixvalue>
 <param1>xyz</param1>
 <param2>yza</param2>
</fixvalue>

In this example, the fix action tag specifies the
new configuration parameter setting for a
structure.

<PositiveModelParameterConstraint>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
 <fixvalue>
 <double>c</double>
 <single>d</single>
 </fixvalue>
</PositiveModelParameterConstraint>

 Create Model Advisor Check for Model Configuration Parameters

6-33

Type Format Example
Array <fixvalue>

 <element>value</element>
 <element>value</element>
</fixvalue>

In this example, the fix action tag specifies the
new configuration parameter setting for an
array.

<NegativeModelParameterConstraint>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
 <fixvalue>
 <element>C</element>
 <element>D</element>
 </fixvalue>
</NegativeModelParameterConstraint>

Structure
Array

<fixvalue>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
</fixvalue>

In this example, the fix action tag specifies the
new configuration parameter settings for a
structure array.

<NegativeModelParameterConstraint>
 <value>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 </value>
 <fixvalue>
 <element>
 <double>c</double>
 <single>d</single>
 </element>
 <element>
 <double>c</double>
 <single>d</single>
 </element>
 </fixvalue>
</NegativeModelParameterConstraint>

• dependson - (Optional) Specifies a prerequisite subcheck.

In this example, dependson specifies that configuration parameter subcheck ID_B must pass
before configuration parameter subcheck ID_A runs.

<PositiveModelParameterConstraint id="ID_A">
 <dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying a configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. If the
configuration parameter is set to Fixed-Step, the subcheck passes.

6 Create Model Advisor Checks

6-34

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter AlgebraicLoopMsg. If the
configuration parameter is set to none or warning, the subcheck passes. If the subcheck does not
pass, the check fix action modifies the configuration parameter to error.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 <value>warning</value>
 <fixvalue>error</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying an array type configuration parameter

<PositiveModelParameterConstraint id="A">
 <parameter>ReservedNameArray</parameter>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
 <value>
 <element>A</element>
 <element>C</element>
 </value>
</PositiveModelParameterConstraint>

Data file tagging specifying a structure type configuration parameter with fix action

<PositiveModelParameterConstraint id="A">
 <parameter>ReplacementTypes</parameter>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
 <value>
 <double>c</double>
 <single>b</single>
 </value>
 <fixvalue>
 <double>a</double>
 <single>b</single>
 </fixvalue>
</PositiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action and prerequisite check

The following tagging specifies a subcheck for configuration parameter SolverType. The subcheck
for SolverType runs only after the ID_B subcheck passes. If theID_B subcheck does not pass, the
subcheck for SolverType does not run. The Model Advisor reports that the prerequisite constraint is
not met.

 Create Model Advisor Check for Model Configuration Parameters

6-35

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the SolverType
subcheck passes. If the subcheck runs and does not pass, the check fix action modifies the
configuration parameter to Fixed-Step.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Fixed-step</value>
 <dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. The subcheck
does not pass if the configuration parameter is set to Fixed-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter SolverType. If the
configuration parameter is set to Fixed-Step, the subcheck does not pass. If the subcheck does not
pass, the check fix action modifies the configuration parameter to Variable-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Variable-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action and
prerequisite check

The following tagging specifies a check for configuration parameter SolverType. The subcheck for
SolverType runs only after the ID_B subcheck passes. If theID_B subcheck does not pass, the
subcheck for SolverType does not run. The Model Advisor reports that the prerequisite constraint is
not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the subcheck does not
pass. The check fix action modifies the configuration parameter to Variable-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Variable-step</value>
 <dependson>ID_B</value>
</NegativeModelParameterConstraint>

See Also
Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.DataFile.validate |
Advisor.authoring.generateConfigurationParameterDataFile

6 Create Model Advisor Checks

6-36

More About
• “Organize and Deploy Model Advisor Checks”

 Create Model Advisor Check for Model Configuration Parameters

6-37

Define Model Advisor Checks for Supported and Unsupported
Blocks and Parameters

You can create Model Advisor checks that check whether blocks use specific block or parameter
values. You can specify constraints for:

• Supported or unsupported block parameter values
• Supported or unsupported model parameter values
• Supported or unsupported blocks
• Whether blocks or parameters meet a combination of constraints

You can also use the addPreRequisiteConstraintID function to add prerequisite constraints that
must pass before Model Advisor checks the actual constraint. You can check your model against these
constraints as you edit or by running the checks from the Model Advisor.

Example

The sldemo_bounce model simulates a ball bouncing on Earth. In this example, you create two
Model Advisor checks consisting of constraints, then check the model against those constraints.

Prepare Your Working Directory

1. Set your current folder to a writeable directory.

2. Copy the script prepare_chk_define_code to your current folder and run the script. The script
copies the files necessary for this example to your current folder.

copyfile(fullfile(matlabroot,'examples','slcheck','main','prepare_chk_define_code.m'),...
 'prepare_chk_define_code.m','f');
run('prepare_chk_define_code.m');

6 Create Model Advisor Checks

6-38

Create a Check for Supported or Unsupported Block Parameters

First, create a Model Advisor check that contains three block parameter constraints, c1, c2, and c3,
that specify the supported and unsupported block parameter values.

1. Define a new function.

function constraints = createConstraints_Check1()
end

2. Inside the function, create two block parameter constraints, c1 and c2.

function constraints = createConstraints_Check1()

 c1=Advisor.authoring.PositiveBlockParameterConstraint;
 c1.ID='ID_1';
 c1.BlockType='Gain';
 c1.ParameterName='Gain';
 c1.SupportedParameterValues={'-0.7'};
 c1.ValueOperator='eq'; % equal to

 c2=Advisor.authoring.NegativeBlockParameterConstraint;
 c2.ID='ID_2';
 c2.BlockType='InitialCondition';
 c2.ParameterName='Value';
 c2.UnsupportedParameterValues={'0'};
 c2.ValueOperator='le'; % less than or equal to

end

Constraint c1 specifies that a Gain block must have a value equal to -0.7. Constraint c2 specifies
that an Initial Condition block with a value less than or equal to zero is unsupported.

3. Create a positive block constraint, c3, and set constraints equal to a cell array of constraints
c1, c2, and c3.

function constraints = createConstraints_Check1()

 c1=Advisor.authoring.PositiveBlockParameterConstraint;
 c1.ID='ID_1';
 c1.BlockType='Gain';
 c1.ParameterName='Gain';
 c1.SupportedParameterValues={'-0.7'};
 c1.ValueOperator='eq'; % equal to

 c2=Advisor.authoring.NegativeBlockParameterConstraint;
 c2.ID='ID_2';
 c2.BlockType='InitialCondition';
 c2.ParameterName='Value';
 c2.UnsupportedParameterValues={'0'};
 c2.ValueOperator='le'; % less than or equal to

 c3=Advisor.authoring.PositiveBlockTypeConstraint;
 c3.ID='ID_3';
 s1=struct('BlockType','Constant','MaskType','');
 s2=struct('BlockType','SubSystem','MaskType','');
 s3=struct('BlockType','InitialCondition','MaskType','');
 s4=struct('BlockType','Gain','MaskType','');

 Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters

6-39

 s5=struct('BlockType','Memory','MaskType','');
 s6=struct('BlockType','SecondOrderIntegrator','MaskType','');
 s7=struct('BlockType','Terminator','MaskType','');
 c3.SupportedBlockTypes={s1;s2;s3;s4;s5;s6;s7;};

 constraints = {c1,c2,c3};

end

Constraint c3 specifies the supported blocks. constraints is a cell array of the block constraints.

4. Define a new Model Advisor check by creating another function, check1. Use the function
Advisor.authoring.createBlockConstraintCheck to create a Model Advisor check, rec, with
these block constraints. Then use mdladvRoot.register(rec) to register the block constraints
check with the Model Advisor.

function check1()

 rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0001',...
 'Constraints',@createConstraints_Check1);

 rec.Title = 'Example 1: Check three block parameter constraints';
 rec.TitleTips = 'Example check three block parameter constraints';

 mdladvRoot = ModelAdvisor.Root;
 mdladvRoot.publish(rec,'Example: My Group')

end

function constraints = createConstraints_Check1()

 c1=Advisor.authoring.PositiveBlockParameterConstraint;
 c1.ID='ID_1';
 c1.BlockType='Gain';
 c1.ParameterName='Gain';
 c1.SupportedParameterValues={'-0.7'};
 c1.ValueOperator='eq'; % equal to

 c2=Advisor.authoring.NegativeBlockParameterConstraint;
 c2.ID='ID_2';
 c2.BlockType='InitialCondition';
 c2.ParameterName='Value';
 c2.UnsupportedParameterValues={'0'};
 c2.ValueOperator='le'; % less than or equal to

 c3=Advisor.authoring.PositiveBlockTypeConstraint;
 c3.ID='ID_3';
 s1=struct('BlockType','Constant','MaskType','');
 s2=struct('BlockType','SubSystem','MaskType','');
 s3=struct('BlockType','InitialCondition','MaskType','');
 s4=struct('BlockType','Gain','MaskType','');
 s5=struct('BlockType','Memory','MaskType','');
 s6=struct('BlockType','SecondOrderIntegrator','MaskType','');
 s7=struct('BlockType','Terminator','MaskType','');
 c3.SupportedBlockTypes={s1;s2;s3;s4;s5;s6;s7;};

 constraints = {c1,c2,c3};

6 Create Model Advisor Checks

6-40

end

Create a Check for a Composite Constraint

Next, create a Model Advisor check that contains three block parameter constraints cc1, cc2, and
cc. Constraints cc1 and cc2 specify which block parameters are supported and constraint cc is a
composite constraint which contains cc1 and cc2.

1. Define a new function.

function constraints = createConstraints_Check2()
end

2. Create two block parameter constraints, cc1 and cc2, and a composite constraint, cc. Set
constraints equal to a cell array of constraints cc1, cc2, and cc.

function constraints = createConstraints_Check2()

 cc1=Advisor.authoring.PositiveBlockParameterConstraint;
 cc1.ID='ID_cc1';
 cc1.BlockType='SecondOrderIntegrator';
 cc1.ParameterName='UpperLimitX';
 cc1.SupportedParameterValues={'inf'};
 cc1.ValueOperator='eq'; % equal to

 cc2=Advisor.authoring.PositiveBlockParameterConstraint;
 cc2.ID='ID_cc2';
 cc2.BlockType='SecondOrderIntegrator';
 cc2.ParameterName='LowerLimitX';
 cc2.SupportedParameterValues={'0.0'};
 cc2.ValueOperator='eq'; % equal to

 cc=Advisor.authoring.CompositeConstraint;
 cc.addConstraintID('ID_cc1');
 cc.addConstraintID('ID_cc2');
 cc.CompositeOperator='and'; % Model Advisor checks multiple constraints

 constraints = {cc1,cc2,cc};

end

Constraint cc1 specifies that for a Second-Order Integrator block, the Upper limit x parameter must
have a value equal to inf. Constraint cc2 additionally specifies that the Lower limit x parameter
must have a value equal to zero. Constraint cc specifies that for this check to pass, both cc1 and cc2
must pass. constriants is a cell array of the block constraints.

3. Define a new Model Advisor check in a new function, check2. Use the function
Advisor.authoring.createBlockConstraintCheck to create a Model Advisor check for the
block constraints defined by the function createConstraints_Check2.

function check2()

 rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0002',...
 'Constraints',@createConstraints_Check2);

 rec.Title = 'Example 2: Check three block parameter constraints';

 Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters

6-41

 rec.TitleTips = 'Example check three block parameter constraints';

 mdladvRoot = ModelAdvisor.Root;
 mdladvRoot.publish(rec,'Example: My Group')

end

function constraints = createConstraints_Check2()

 cc1=Advisor.authoring.PositiveBlockParameterConstraint;
 cc1.ID='ID_cc1';
 cc1.BlockType='SecondOrderIntegrator';
 cc1.ParameterName='UpperLimitX';
 cc1.SupportedParameterValues={'inf'};
 cc1.ValueOperator='eq';

 cc2=Advisor.authoring.PositiveBlockParameterConstraint;
 cc2.ID='ID_cc2';
 cc2.BlockType='SecondOrderIntegrator';
 cc2.ParameterName='LowerLimitX';
 cc2.SupportedParameterValues={'0.0'};
 cc2.ValueOperator='eq';

 cc=Advisor.authoring.CompositeConstraint;
 cc.addConstraintID('ID_cc1');
 cc.addConstraintID('ID_cc2');
 cc.CompositeOperator='and';

 constraints = {cc1,cc2,cc};

end

Create and Run Model Advisor Checks

1. To register the new checks, use an sl_customization.m file. For this example, rename the
sl_customization_DefineChecks.m file to sl_customization.m.

function sl_customization(cm)

 % register custom checks.
 cm.addModelAdvisorCheckFcn(@check1);
 cm.addModelAdvisorCheckFcn(@check2);

2. At the command prompt, create the Example 1: Check block parameter constraints and
Example 2: Check block parameter constraints checks by typing this command:

Advisor.Manager.refresh_customizations

3. At the command prompt, open the model sldemo_bounce.

open_system('sldemo_bounce')

4. In the Modeling tab, select Model Advisor to open the Model Advisor.

5. In the left pane, select By Product > Example: My Group.

6 Create Model Advisor Checks

6-42

6. Click Run Checks.

The Example 1: Check three block parameter constraints check produces a warning because the
Gain block has a value of -0.8. The Example 2: Check three block parameter constraints check
passes because the Second-Order Integrator block meets both constraints.

Create Model Advisor Edit-Time Checks using Constraints

You can use edit-time checking to highlight blocks with block constraint violations in the model
canvas. You can choose which Model Advisor checks evaluate during edit-time checking by selecting
the desired checks in the Model Advisor Configuration Editor and saving a custom configuration.

1. To open the Model Advisor Configuration Editor, open the Model Advisor and select Open > Open
Configuration Editor.

2. The checks you created appear in the By Product > Example: My Group.

3. For this example, delete all folders except for the Example: My Group folder.

4. Click Save and save the configuration as my_config.json.

5. In the dialog box, click No because you do not want to set this configuration as the default
configuration.

6. In the Simulink model editor, on the Modeling tab, click Model Advisor > Edit-Time Checks.

 Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters

6-43

7. For the Model advisor configuration file parameter, click Browse, and select my_config.json.

8. Select the Edit-Time Checks parameter and close the Configuration Parameters dialog box.

9. Click on the highlighted block in the model to view the edit-time warning.

You can edit the block parameter values from the edit-time check diagnostics window by clicking the
Fix button or by clicking the hyperlinks of the unsupported parameter to open the Block
Parameters window.

See Also
PositiveBlockParameterConstraint | NegativeBlockParameterConstraint |
PositiveModelParameterConstraint | NegativeModelParameterConstraint |
PositiveBlockTypeConstraint | NegativeBlockTypeConstraint |
Advisor.authoring.generateBlockConstraintsDataFile

More About
• “Check Model Compliance Using Edit-Time Checking” on page 3-6
• “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor”

on page 6-9
• “Define Custom Edit-Time Checks that Fix Issues in Architecture Models” on page 6-17

6 Create Model Advisor Checks

6-44

Define Custom Model Advisor Checks
You can create your own conditions and model configuration settings for the Model Advisor to review
by defining custom checks. You can create custom checks that run during edit-time and in the Model
Advisor or only in the Model Advisor.

Custom edit-time checks help you identify issues earlier in the model design process, but they look
only at blocks and signals at the same level of the model or subsystem that a user is editing. However,
these checks do aggregate over the levels of a model hierarchy and report issues in the Model
Advisor. If your check must check for impacted blocks at other levels of the model, create a custom
check that runs only in the Model Advisor. For example, if your check must check for mismatched
From and Goto blocks across a model hierarchy, define this check to run only in the Model Advisor.

These steps show the process for creating checks that run during edit-time or only in the Model
Advisor.

1 “Create sl_customization Function” on page 6-45
2 “Register Custom Checks” on page 6-45
3 “Create Check Definition Function” on page 6-46

a “Create an Instance of the ModelAdvisor.Check Class” on page 6-46
b Define your custom check by following the steps in either “Define Custom Model Advisor

Checks” on page 6-46 or “Define Custom Edit-Time Checks” on page 6-47.
c “Define Check Input Parameters” on page 6-48
d “Publish Custom Check” on page 6-49

Create sl_customization Function
To define a custom check, begin by creating an sl_customization.m file on the MATLAB path. In
the sl_customization.m file, create an sl_customization function. The sl_customization
function accepts one argument, a customization manager object:

function sl_customization(cm)

Tip

• You can have more than one sl_customization.m file on your MATLAB path.
• Do not place an sl_customization.m file that customizes Model Advisor checks and folders in

your root MATLAB folder or its subfolders, except for the matlabroot/work folder. Otherwise,
the Model Advisor ignores the customizations that the file specifies.

Register Custom Checks
To register custom checks, use the addModelAdvisorCheckFcn method, which is part of the
customization manager object that you input to the sl_customization function. This code shows a
sample sl_customization.m function:

function sl_customization(cm)
% register custom checks

 Define Custom Model Advisor Checks

6-45

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorChecks
defineDetailStyleCheck;
defineConfigurationParameterCheck;
defineNewBlockConstraintCheck;
defineEditTimeChecks;

The addModelAdvisorCheckFcn method registers the checks to the By Product folder of the
Model Advisor. The defineModelAdvisorChecks argument is a handle to the function that contains
calls to the functions that define the custom checks. For each custom Model Advisor check that you
create, you should create a check definition function. You can create one check definition function for
your edit-time checks because each edit-time check contains its own class definition.

Create Check Definition Function
The check definition function defines the actions that the Model Advisor takes when you run the
check. These sections describe the key components of the check definition function for custom edit-
time checks and checks that run only in the Model Advisor.

Create an Instance of the ModelAdvisor.Check Class

For each custom check, create one instance of the ModelAdvisor.Check class. Use the
ModelAdvisor.Check properties and methods to define the check user interface and actions. This
table describes some key check components.

Contents Description
Check ID (required) Uniquely identifies the check. The Model Advisor uses this ID to

access the check.
(Custom Model Advisor check only)
Handle to the check callback
function (required)

Function that specifies the contents of a check.

(Custom Model Advisor check only)
Handle to action callback function
(optional)

Adds a fixing action.

(Custom Edit-time check only)
Handle to class (required)

Derived class that defines the actions for the edit-time check.
Optionally, this class can also define a fix for the edit-time check.

Check name (recommended) Specifies a name for the check in the Model Advisor.
Model compiling (optional) Specifies whether the model is compiled for check analysis. The

PostCompileForCodegen value of the CallbackContext
property is not supported for edit-time checks.

Input parameters (optional) Adds input parameters that request input from the user. The
Model Advisor uses the input to perform the check.

Define Custom Model Advisor Checks

For a custom check that only appears in the Model Advisor, the check definition function contains a
check callback function that specifies the actions that you want the Model Advisor to perform on a

6 Create Model Advisor Checks

6-46

model or subsystem. Define the check callback function and pass a handle to it to the
setCallbackFcn method. The Model Advisor executes the callback function when you run the
check. Callback functions provide one or more return arguments that display the results after
executing the check. The Model Advisor executes the callback function when you run the check.

If you are specifying a custom check fix, the check definition function should also contain an action
callback function. In the check definition function, create an instance of the ModelAdvisor.Action
class. Define the action callback function and pass a handle to it to the setCallbackFcn method. In
the Model Advisor, the check user clicks Fix to apply the custom fix to their model.

Callback and action callback functions provide one or more return arguments for displaying the
results after executing the check. See “Create the Check Callback Definition Function” on page 6-23
and “Create the Action Callback Definition Function” on page 6-24.

To use default formatting for Model Advisor results, specify the callback function type as
DetailStyle in the setCallbackFcn method. If the default formatting does not meet your needs,
use either the ModelAdvisor.FormatTemplate class or these other Model Advisor formatting
classes:

Class Description
ModelAdvisor.Text Create a Model Advisor text output.
ModelAdvisor.List Create a list.
ModelAdvisor.Table Create a table.
ModelAdvisor.Paragraph Create and format a paragraph.
ModelAdvisor.LineBreak Insert a line break.
ModelAdvisor.Image Include an image in the Model Advisor output.

Define Custom Edit-Time Checks

To create a custom edit-time check, create a MATLAB class that derives from the
ModelAdvisor.EdittimeCheck class. In the check definition function, specify this class as the
value of the ModelAdvisor.Check CallbackHandle property. Inside the derived class, define
these methods:

• Define a method that specifies the check ID and the
ModelAdivsor.EdittimeCheck.TraversalType properties of the check. The
TraversalType property specifies how the Model Advisor runs the check.

• Define a blockDiscovered method that looks for blocks that violate your edit-time algorithm.
• If the violation is on a block, highlight the block during edit-time by creating a

ModelAdvisor.ResultDetail violation object with the Type property set to the default value of
SID. If the violation is on a signal, highlight the signal by creating a violation object with the Type
property set to Signal.

• If you specify a TraversalType property of edittimecheck.TraversalTypes.ACTIVEGRAPH,
define a finishedTraversal method that specifies what the edit-time check does with the data
the check collects as part of the blockDiscovered method.

• Optionally, define a fix method for edit-time check violations.

For an example, see “Define Edit-Time Checks to Comply with Conditions that You Specify with the
Model Advisor” on page 6-9.

 Define Custom Model Advisor Checks

6-47

To help prevent custom edit-time checks from negatively impacting performance as you edit your
model, the Model Advisor automatically disables custom edit-time checks if, in the current MATLAB
session, the check takes longer than 500 milliseconds to execute in at last three different Simulink
models.

If the Model Advisor disables a custom edit-time check, you will see a warning on the Simulink
canvas. You can re-enable the edit-time check by either:

• Clicking the hyperlink text in the warning.
• Passing the check identifier, checkID, to the function

edittime.enableCheck:edittime.enableCheck(checkID).

To prevent a custom edit-time check from being disabled, author the check so that the check executes
in less than 500 milliseconds on your models.

Define Check Input Parameters

You can request input before running the check by using input parameters. Define input parameters
by using the ModelAdvisor.InputParameter class. You must include input parameter definitions
inside a custom check definition function. You must define one instance of this class for each input
parameter that you want to add to a custom check.

Specify the layout of input parameters in the Model Advisor by using these methods.

Purpose Method
Specifies the size of the input parameter grid .setInputParametersLayoutGrid
Specifies the number of rows the parameter
occupies in the input parameter layout grid.

setRowSpan

Specifies the number of columns the parameter
occupies in the input parameter layout grid.

setColSpan

The Model Advisor displays input parameters in the Input Parameters box.

Display and Enable Check

You can specify how a custom check appears in the Model Advisor. You can define when to display a
check, or whether a user can select or clear a check using the Visible, Enable, and Value
properties of the ModelAdvisor.Check class. These properties interact as follows:

• If the Visible property is false, the check or task is not displayed in the Model Advisor and the
Enable and Value properties are ignored.

• If the Visible property is true and the Enable property is false:

• The check is displayed in the Model Advisor.
• The initial status of the check is Value.
• The check box appears dimmed.

• If the Visible property is true and the Enabled property is true, the check or task is displayed
in the Model Advisor and the check box is active.

6 Create Model Advisor Checks

6-48

Publish Custom Check

Create a folder for custom checks in the By Product folder by using the publish method. Then, use
the Model Advisor Configuration Editor to customize the folders within the Model Advisor tree. For
more information, see “Use the Model Advisor Configuration Editor to Customize the Model Advisor”
on page 7-3.

See Also
ModelAdvisor.Check | ModelAdvisor.EdittimeCheck | ModelAdvisor.InputParameter |
ModelAdvisor.Action | publish

Related Examples
• “Create and Deploy a Model Advisor Custom Configuration” on page 7-23
• “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor”

on page 6-9
• “Define Custom Edit-Time Checks that Fix Issues in Architecture Models” on page 6-17
• “Fix a Model to Comply with Conditions that You Specify with the Model Advisor” on page 6-21
• “Create Model Advisor Check for Model Configuration Parameters” on page 6-27
• “Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters” on page

6-38

 Define Custom Model Advisor Checks

6-49

Define the Compile Option for Custom Model Advisor Checks
Depending on the implementation of your model and what you want your custom check to achieve, it
is important that you specify the correct compile option. You specify the compile option for the check
definition function of a ModelAdvisor.Check object by setting the CallbackContext property as
follows:

• None specifies that the Model Advisor does not have to compile your model before analysis by
your custom check. None is the default setting of the CallbackContext property.

• PostCompile specifies that the Model Advisor must compile the model to update the model
diagram and then simulate the model to execute your custom check. The Model Advisor does not
flag modeling issues that fail during code generation because these issues do not affect the
simulated model.

• PostCompileForCodegen specifies that the Model Advisor must compile and update the model
diagram specifically for code generation, but does not simulate the model. Use this option for
Model Advisor checks that analyze the code generation readiness of the model. This option is not
supported for custom edit-time checks.

Checks that Evaluate the Code Generation Readiness of the Model
You can create custom Model Advisor checks that enable the Model Advisor engine to identify code
generation setup issues in a model at an earlier stage so you can avoid unexpected errors during
code generation. For example, in this model, the Red enumeration in BasicColors and
OtherColors are OK for use in a simulated model. In the generated code, however, these Red
enumerations result in an enumeration clash. By using the 'PostCompileForCodegen' option, your
custom Model Advisor check can identify this type of code generation setup issue.

6 Create Model Advisor Checks

6-50

The 'PostCompileForCodegen' option compiles the model for all variant choices. This compilation
enables you to analyze possible issues present in the generated code for active and inactive variant
paths in the model. An example is provided in “Create Custom Check to Evaluate Active and Inactive
Variant Paths from a Model” on page 6-51.

Create Custom Check to Evaluate Active and Inactive Variant Paths
from a Model
This example shows the creation of a custom Model Advisor check that evaluates active and inactive
variant paths from a variant system model. The example provides Model Advisor results that
demonstrate why you use PostCompileForCodegen instead of PostCompile as the value for the
ModelAdvisor.Check.CallbackContext property when generating code from the model is the
final objective.

Update Model to Analyze All Variant Choices

For the Model Advisor to evaluate active and inactive paths in a variant system, you must set the
Variant activation time parameter to Code compile or startup for the variant blocks (Variant
Sink, Variant Source, and Variant Subsystem, Variant Model). You must also set the System target
file configuration parameter to ert.tlc.

Note: Selecting this option can affect the execution time and increase the time it takes for the Model
Advisor to evaluate the model.

 Define the Compile Option for Custom Model Advisor Checks

6-51

1 Open the example model ex_check_compile_code_gen.
2 For each Variant Source block, open the block parameters and set the Variant activation time

parameter to Code compile.
3 Save the model to your local working folder.

Create an sl_customization Function

In your working folder, create this sl_customization function and save it.

function sl_customization(cm)

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorCheck);

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorCheck
CheckSingleToBoolConversion;

The sl_customization function accepts a customization manager object. The customization
manager object includes the addModelAdvisorCheckFcn method for registering custom checks.
The input to this method is a handle to a function (defineModelAdvisorCheck). This function
contains a call to the check definition function that corresponds to the custom check.

Open and inspect the check definition function,CheckSingleToBoolConversion.m:

function CheckSingleToBoolConversion
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck1');

6 Create Model Advisor Checks

6-52

rec.Title = 'Check to identify Single to Bool conversions';
rec.TitleID = 'custom.dtcCheck.CompileForCodegen1';
rec.TitleTips = 'Custom check to identify Single to Bool conversions';
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for Code Generation

mdladvRoot.publish(rec, 'Demo');

end

function DetailStyleCallback(system, CheckObj)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

violationBlks = find_system(system, 'BlockType', 'DataTypeConversion');
for ii = numel(violationBlks):-1:1
 dtcBlk = violationBlks{ii};
 compDataTypes = get_param(dtcBlk, 'CompiledPortDataTypes');
 if isempty(compDataTypes)
 violationBlks(ii) = [];
 continue;
 end
 if ~(strcmp(compDataTypes.Inport, 'single') && strcmp(compDataTypes.Outport, 'boolean'))
 violationBlks(ii) = [];
 continue;
 end
end

if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'This check looks for data type conversion blocks that convert single data to boolean data';
 ElementResults.Status = 'Check has passed. No data type conversion blocks that convert single data to boolean were found.';
 mdladvObj.setCheckResultStatus(true);
else

 for i=1:numel(violationBlks)
 ElementResults(1,i) = ModelAdvisor.ResultDetail;
 end
 for i=1:numel(ElementResults)

 ModelAdvisor.ResultDetail.setData(ElementResults(i), 'SID',violationBlks{i});
 ElementResults(i).Description = 'This check looks for data type conversion blocks that convert single data to boolean data';
 ElementResults(i).Status = 'Check has failed. The following data type conversion blocks convert single data to boolean:';
 ElementResults(i).RecAction = 'Modify the model to avoid converting data type from single to boolean';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);
end

For more information on creating custom checks, see “Define Custom Model Advisor Checks” on page
6-45.

 Define the Compile Option for Custom Model Advisor Checks

6-53

Open Model Advisor and Execute Custom Check

Before opening the Model Advisor and running the custom check, you must refresh the Model Advisor
check information cache. In the MATLAB Command Window, enter:

Advisor.Manager.refresh_customizations

To open the Model Advisor and execute the custom check:

1 Open your saved model.
2 In the Modeling tab, select Model Advisor. A System Selector - Model Advisor dialog box

opens. Click OK. The Model Advisor opens.
3 In the left pane, select By Product > Demo > Check to identify Single to Bool conversion.
4 Right-click the check and select Run this Check. The Model Advisor compiles the model and

executes the check. The Model Advisor updates the model diagram. The inactive variant paths
appear dimmed.

Review the Model Advisor Results

Review the check analysis results in the Model Advisor. Click the hyperlinks to open the violating
block in the model editor.

In this example, because you defined the compile option in the sl_customization.m file as

rec.CallbackContext = 'PostCompileForCodegen';

the Model Advisor generates warnings for the Data Type Conversion blocks in the active paths and
the inactive paths of the variant systems.

6 Create Model Advisor Checks

6-54

If you defined the compile option in the sl_customization.m file as

rec.CallbackContext = 'PostCompile';

the results include only the Data Type Conversion blocks in the active path.

 Define the Compile Option for Custom Model Advisor Checks

6-55

See Also
ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Variant Systems”

6 Create Model Advisor Checks

6-56

Exclude Blocks From Custom Checks
This example shows how to exclude blocks from custom checks. To save time during model
development and verification, you can exclude individual blocks from custom checks during a Model
Advisor analysis. To exclude custom checks from Simulink blocks and Stateflow charts, use the
ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions in the check definition file.

Update the Check Definition File

1 Set your folder to a writeable directory.
2 Copy the script prepare_cust_chk_code to your current folder and run the script. The script

copies the files for this example to your current folder.

copyfile(fullfile(matlabroot,'examples','slcheck','main','prepare_cust_chk_code.m'),...
 'prepare_cust_chk_code.m','f');
run('prepare_cust_chk_code.m');

3 Open the defineDetailStyleCheck file.
4 To update the Check whether block names appear below blocks check to exclude blocks

during Model Advisor analysis, make two modifications to the defineDetailStyleCheck file.

a Enable the Check whether block names appear below blocks check to support check
exclusions by using the ModelAdvisor.Check.supportExclusion property. After
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');, add
rec.supportExclusion = true;. The first section of the function
defineDetailStyleCheck now looks like:

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');
rec.supportExclusion = true;

b Use the Simulink.ModelAdvisor.filterResultWithExclusion function to filter
model objects causing a check warning or failure with checks that have exclusions enabled.
To do this, modify the DetailStyleCallback(system, CheckObj) function as follows:

% Find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
violationBlks = mdladvObj.filterResultWithExclusion(violationBlks);

5 Save the DefineDetailStyleCheck file. If you are asked if it is OK to overwrite the file, click
OK.

Create and Save Exclusions

1 In order for your customizations to be visible in the Model Advisor, you must refresh the Model
Advisor check information cache. At the MATLAB command prompt, type this command:

Advisor.Manager.refresh_customizations();
2 To open the model, double-click AdvisorCustomizationExample.slx.
3 In the Modeling tab, select Model Advisor to open the Model Advisor.

 Exclude Blocks From Custom Checks

6-57

4 In the left pane of the Model Advisor window, select the By Product > Demo > Check whether
block names appear below blocks check. In the right pane, select Run This Check. The
check fails.

5 In the model window, right-click the X block and select Model Advisor > Exclude block only >
Select Checks. Navigate to the Demo folder and select the Check whether block names
appear below blocks check.

6 In the Model Advisor Exclusion Editor, click Save to create an exclusion file.
7 In the model window, open the Amplifier subsystem and right-click the GainBlock block and

select Model Advisor > Exclude block only > Select Checks. Navigate to the Demo folder
and select the Check whether block names appear below blocks check.

8 In the Model Advisor Exclusion Editor, click Save to update the exclusion file.

Review Exclusions

1 In the left pane of the Model Advisor window, select the By Product > Demo > Check whether
block names appear below blocks check. In the right pane, select Run Checks. The check
now passes. In the right-pane of the Model Advisor window, you can see the Check Exclusion
Rules that the Model Advisor applies during the analysis.

2 Close the model and the Model Advisor.

See Also
supportExclusion | Simulink.ModelAdvisor

Related Examples
• Excluding Blocks From Model Advisor Checks on page 3-9

More About
• “Run Model Advisor Checks and Review Results” on page 3-4

6 Create Model Advisor Checks

6-58

Create Help for Custom Model Advisor Checks
You can define help files for your custom Model Advisor checks to make the checks easier to use.
Custom help files allow you to verify the check capabilities and avoid potential warnings in the model.

You can define custom help for:

• Custom checks - To Add help for custom Model Advisor checks, use
ModelAdvisor.Check.setHelp. For more information, see setHelp.

• Folders that have custom checks - To add help for folders that contain custom Model Advisor
checks, use ModelAdvisor.Group.setHelp. For more information, see setHelp.

To point the custom check help to a PDF or an HTML page of your choice:

1 Open the sl_customization.m file.
2 Use setHelp() on the check or group object created in the sl_customization.m file.

setHelp('format','webpage','path','custom_path');

The supported name-value arguments are:

Format - "webpage" , "pdf"

Path - Path of the user-defined help page or document

Example:

checkObj = ModelAdvisor.Check('SimplePassFailCheck');
checkObj.setHelp('format','webpage','path','custom_path');

3 Close the sl_customization.m file.
4 Refresh the customizations by entering:

Advisor.Manager.refresh_customizations

To view the custom help, right-click the custom checks or the folder and click What's This?.

See Also
“Define Custom Model Advisor Checks” on page 6-45

“Create and Deploy a Model Advisor Custom Configuration” on page 7-23

 Create Help for Custom Model Advisor Checks

6-59

Model Advisor Customization

7

Customize the Configuration of the Model Advisor Overview
You can use Model Advisor API and the Model Advisor Configuration Editor to customize the
configuration of the Model Advisor, including:

• Define which built-in (shipped) and custom Model Advisor checks are available in the Model
Advisor and their order of execution.

• Create custom folders and organize checks.
• Designate the default configuration file for the Model Advisor.
• Associate a configuration file with a model.
• Suppress the warning about missing checks when loading the Model Advisor configuration.

To customize the Model Advisor to include custom checks and a custom configuration, perform the
following tasks:

1 (Optional) Author custom checks in a customization file. For more information, see “Create
Model Advisor Checks”.

2 Use the Model Advisor Configuration Editor to specify the folders and checks that you want to
include in your custom Model Advisor configuration. For more information, see “Use the Model
Advisor Configuration Editor to Customize the Model Advisor” on page 7-3.

3 Update your Simulink environment so that the Model Advisor uses your configuration files. For
more information, see “Update the Environment to Include Your Custom Configuration” on page
7-19.

4 Open the Model Advisor, load the configuration, and verify that the Model Advisor is using the
correct configuration and that your checks are available. Optionally, you can associate the
configuration with your model. For more information, see “Load and Associate a Custom
Configuration with a Model” on page 7-20.

5 (Optional) Deploy the custom configurations to your users. For more information, see “Deploy
Custom Configurations” on page 7-22.

6 Verify that models comply with modeling guidelines. For more information, see “Run Model
Advisor Checks and Review Results” on page 3-4.

7 Model Advisor Customization

7-2

Use the Model Advisor Configuration Editor to Customize the
Model Advisor

Overview of the Model Advisor Configuration Editor
The Model Advisor Configuration Editor provides a way for you to specify the checks that you want to
use for edit-time checking, as well as the checks included in the Model Advisor. This organizational
hierarchy is saved as a configuration file, which is loaded when you initiate the Model Advisor. You
can use the Model Advisor Configuration Editor to modify existing configurations, create new Model
Advisor configurations, and specify the default configuration.

The Model Advisor Configuration Editor gives you the flexibility to customize the Model Advisor
analysis to meet the needs of your organization by allowing you to:

• Review all available Model Advisor checks.
• Add, remove, and organize built-in checks and folders in the Model Advisor tree.
• Integrate custom Model Advisor checks in your verification and validation workflow.
• Disable and enable checks and folders.
• Rename checks and folders.
• Specify whether a check is marked as a warning or failure when it is flagged during a Model

Advisor analysis.
• Suppress the warning about missing checks when loading the Model Advisor configuration.

The Model Advisor Configuration Editor includes:

• The Library pane — A read-only pane that lists all checks and folders that are available for use in
the configuration, delineated by the By Product and By Task tabs. To permanently display the
Library tab, click Show Library on the toolstrip.

• The Model Advisor pane — This pane lists the checks and folders in the current Model Advisor
configuration, filtered by:

• All checks ― Lists all Model Advisor checks included in the current configuration
• Edit time supported checks ― Lists only the Model Advisor checks that are supported as

edit-time checks
• Information tab — This tab provides details about the check or folder, such as the Display

Name, Check Instance ID or Check Group ID, and the Check result when issues are
flagged.

Use the search functionality in the Library and Model Advisor panes to locate specific checks and
folders.

 Use the Model Advisor Configuration Editor to Customize the Model Advisor

7-3

Open the Model Advisor Configuration Editor
Before opening the Model Advisor Configuration Editor, verify that the current folder is writable. If
the folder is not writable, you see an error message when you start the Model Advisor Configuration
Editor.

When implementing custom checks or Model Advisor customizations by using the Model Advisor API,
you must first update the Simulink environment to include your sl_customization.m file. At the
MATLAB command line, enter

Advisor.Manager.refresh_customizations

Use one of these methods to open the Model Advisor Configuration Editor:

• Programmatically ― At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.

• From the Simulink editor ― In the Modeling tab, select Model Advisor > Configuration
Editor .

• From the Model Advisor ― Select Open > Open Configuration Editor.

The configuration file that is currently being used by the Model Advisor displays when you open the
Model Advisor Configuration Editor. The file name for the configuration is displayed at the top of the

7 Model Advisor Customization

7-4

window. Verify that you are evaluating the correct configuration file. To open a different configuration
file, click Open and browse to the file you would like to review.

To create a new configuration, click the New button on the toolstrip. Use Save As to rename the
configuration file. Model Advisor configuration files are saved in .json format.

Specify a Default Configuration File
You can use the Model Advisor Configuration Editor to specify a default configuration that loads
automatically when the Model Advisor opens. To set the default configuration, open the configuration
file in the Model Advisor Configuration Editor and click the Set As Default button on the toolstrip.

Note If you have previously designated a default configuration, you can use Clear default
configuration setting to clear the setting that designates the current default configuration file.
Clicking the button does not modify the configuration that is currently displayed in the Model Advisor
Configuration Editor. When you do not specify a default configuration, the Model Advisor uses the
standard configuration that is defined by your system administrator.

If you do not specify the configuration file as the default, when you save the file, you are prompted as
to whether to make the file the default configuration. To make this file the default configuration, click
Yes.

To associate a custom configuration with a model, so that the Model Advisor uses that configuration
each time you open that model, see “Load and Associate a Custom Configuration with a Model” on
page 7-20.

Customize the Model Advisor Configuration
You can use the Model Advisor Configuration Editor to customize the Model Advisor configuration
tree, including adding and removing checks and folders and specifying the order in which checks are
executed. You can also disable the ability for users to select whether to include or exclude a check
from an analysis. You can also use the Model Advisor Configuration Editor to define the input
parameters for a check.

Note Checks that are copied from the Library tab retain their default parameter settings. When they
are pasted into your custom configuration folder, the box beside each check is not selected.

Checks that are copied or cut from a folder in the Model Advisor tab retain their user-define
parameter settings. When a check is included in multiple folders, you can specify different
parameters for each check individually.

Organize the Hierarchy

You can customize the layout of the checks and folders in the Model Advisor configuration tree by
using:

• New Folder to create a folder.
• Copy, Cut, and Paste to add, copy, and move checks and folders.

 Use the Model Advisor Configuration Editor to Customize the Model Advisor

7-5

• Delete to remove checks and folders.
• Move Up or Move Down to shift the position of the check or folder in the configuration tree. The

folders and checks that are higher in the configuration tree are executed first in the analysis.

Note, you can customize the Model Advisor by using the ModelAdvisor.Group and
ModelAdvisor.FactoryGroup classes instead of the Model Advisor Configuration Editor. However,
these APIs are a less flexible and more time-consuming way of customizing the Model Advisor. To
place customized checks in custom folders at the top-level of the Model Advisor tree (the Model
Advisor root), use the ModelAdvisor.Group class. To place customized checks in new folders in the
By Task folder, use the ModelAdvisor.FactoryGroup class. You must include methods that
register these tasks and folders in the sl_customization function.

Enable or Disable Checks

You can use the Model Advisor Configuration Editor to disable the check box control for checks and
folders in the Model Advisor. By doing so, the check is still listed in the Model Advisor configuration
tree, but it is dimmed and you do not have the ability to add or remove the check from the analysis.

In the Model Advisor pane, right-click on a folder or check and select Disable. Depending on the
check box selection in the Model Advisor Configuration Editor, the following results occur in the
Model Advisor:

• If the box beside check is selected in the Model Advisor Configuration Editor, then in the Model
Advisor, the check is automatically selected. Because you selected Disable, the check is dimmed
and you cannot choose to remove the check from the analysis.

If the box beside the check is not selected and the Disable option is applied in the Model Advisor
Configuration Editor, then in the Model Advisor, the check is not selected and you cannot included
it in the analysis.

• If the box beside folder is selected in the Model Advisor Configuration Editor, then in the Model
Advisor, the checks within the folder are automatically selected. Because you selected Disable,
the folder and its checks are dimmed and you cannot choose to remove the checks from the
analysis.

If the box beside the folder is not selected and the Disable option is applied in the Model Advisor
Configuration Editor, then in the Model Advisor, none of the checks within the folder are selected
and you cannot include it in the analysis.

When a check or folder is disabled, you can use the Enable option to allow users to determine
whether to include the check(s) in an analysis.

Note Enable and Disable affects the execution of checks in the analysis for both the Model Advisor
user interface and edit-time checking.

Specify Parameters for Check Customization

You can use the Model Advisor Configuration Editor to customize a Model Advisor check, such as the
display name and input parameters for the check.

In the Information tab, review the content that you can customize for the check:

• Display Name — Provide a new name for the check, which is displayed in the Model Advisor.
Note that changing the display name does not change the check title.

7 Model Advisor Customization

7-6

• Check result when issues are flagged — Specify whether you want the check to be marked as a
warning or failure in the results when the check flags an issue in your model. The default value is
Warning. Select Fail to mark a flagged check as failed in the results.

• Input Parameters — Specify additional characteristics and functionality for the check. The
Model Advisor uses these parameters to further define the emphasis of the analysis. For example,
you can choose to include only subcheck jc_0736_b and specify the acceptable number of single-
byte spaces in the analysis for Model Advisor check “Check indentation of code in Stateflow
states”.

Suppress Warning Message for Missing Checks
The Model Advisor automatically warns you of checks that are missing when loading a Model Advisor
configuration. You can use the Model Advisor Configuration Editor to suppress this message. Select
the Model Advisor Configuration Editor root node and, in the Information tab, select Suppress
warning message for missing checks when loading configuration.

Alternatively, you can programmatically suppress the Model Advisor warning by entering this
command at the MATLAB command line:
warning('off','Simulink:tools:MALoadConfigMissCorrespondCheck')

Use the Model Advisor Configuration Editor to Create a Custom Model
Advisor Configuration
You can use the Model Advisor Configuration Editor to organize the hierarchy of the Model Advisor
and specify checks that are included in check analyses. This example shows how to create a new
configuration file, specify checks for the Model Advisor and edit-time checking, define check
parameters, and load the configuration to the Model Advisor.

Create a Model Advisor Configuration

In this example, you will create a custom configuration file named custom_Configuration.json.
This configuration will consist of MathWorks Advisory Board (MAB) modeling guidelines checks and
industry standard checks that you want to execute by using the Model Advisor.

1. Open the Model Advisor Configuration editor by entering this command at the command prompt:

Simulink.ModelAdvisor.openConfigUI

2. In the toolstrip, select Show Library to display the Library pane. In the By Product tab search
field, enter ISO 26262.

3. Right-click on the Simulink Check > Modeling Standards > IEC 61508, IEC 62304, ISO
26262, ISO 225119, EN 50128, and EN 50657 Checks folder and select Copy. Right-click on the
Model Advisor Configuration Editor root folder and click Paste. Verify that the folder and checks have
been copied to the root folder.

Note: Checks that are copied from the Library pane retain their default parameter settings. When
they are pasted into your custom configuration folder, the box beside each check is not selected.

4. In the By Task folder on the Model Advisor pane, right-click on the Modeling Standards for
MAB folder and select Cut. Click on the Model Advisor Configuration Editor root folder and click
Paste. The folder is removed from the By Task folder and is added as a new subfolder in the Model
Advisor Configuration Editor root folder.

 Use the Model Advisor Configuration Editor to Customize the Model Advisor

7-7

Note: Checks that are copied or cut from a folder in the Model Advisor pane retain their user-
defined parameter settings. When a check is included in multiple folders, you can specify different
parameters for each check individually.

5. Select the IEC 61508, IEC 62304, ISO 26262, ISO 225119, EN 50128, and EN 50657
Checks folder and use the Move Down button to change the position this folder in the hierarchy. The
Model Advisor will execute the checks in the Modeling Standards for MAB folder first.

6. Select the By Product and By Task folders and select Delete.

7. In the Model Advisor pane, set the configuration focus option to Edit-Time supported
checks. The Edit-Time supported checks option displays the checks in this configuration that
support edit-time checking.

8. Click Save As and name the configuration file to custom_Configuration. Select Yes at the
prompt to save the configuration as the default configuration. The file automatically saves in .json
format.

Note: If you have previously designated a default configuration, you can use Clear default
configuration setting to clear the flag that specifies the current default configuration file. Clicking
the button does not modify the configuration that is currently displayed in the Model Advisor
Configuration Editor.

9. Close the Model Advisor Configuration Editor.

10. Open the AdvisorCustomizationExample.slx model by entering the following in the
MATLAB command line:

open_system('AdvisorCustomizationExample.slx');

11. On the Modeling tab, click Model Advisor > Edit-Time Checks. In the Configuration
Parameters dialog box, select Edit-Time Checks and Apply. Close the Configuration Parameters
dialog box.

12. In the model, notice that three blocks are highlighted. These blocks contain edit-time check
violations for this configuration. Place your cursor over a warning and click the block to discover the
issue.

7 Model Advisor Customization

7-8

13. Open the Model Advisor and confirm that the Model Advisor displays the folders Modeling
Standards for MAB and IEC 61508, IEC 62304, ISO 26262, ISO 225119, EN 50128, and EN
50657 Checks.

14. Close the Model Advisor.

Update a Model Advisor Configuration

You will now customize the checks in your custom configuration file, custom_Configuration.json
file and review the effect that your customizations have on the Model Advisor analysis of the
AdvisorCustomizationExample.slx model.

1. On the Modeling tab, click Model Advisor > Configuration Editor.

2. Clear the check box the box beside the Model Advisor Configuration Editor root node folder.
(This step is optional. However, deselecting the checks allows you to more easily view the results of
using the Model Advisor Configuration Editor to specify checks for display in the Model Advisor.)

3. To allow you to use the Model Advisor to specify which checks to include in the Model Advisor
analysis, right-click on the Model Advisor Configuration Editor root folder and click Enable.
(Note: Enable is the default setting. This option is dimmed when none of the checks are disabled.)

4. Check the box beside the Modeling Standards for MAB > Naming Conventions > Content >
Check character usage in block name check.

5. Right-click on each of these checks and select Disable:

 Use the Model Advisor Configuration Editor to Customize the Model Advisor

7-9

• Modeling Standards for MAB > Naming Conventions > Content > Check character usage
in block names

• Modeling Standards for MAB > Naming Conventions > Content > Check length of
subsystem name

6. Click the Modeling Standards for MAB > Simulink > Diagram Appearance > Check
whether block names appear below blocks check and, in the Information tab, select Fail for
the Check result when issues are flagged option. Click Apply.

Note: The default for the Check result when issues are flagged option is Warning.

7. Click Save to save the configuration. Close the Model Advisor Configuration Editor and the model.

8. Refresh the Model Advisor cache and open model AdvisorCustomizationExample.slx by
entering the following in the MATLAB command line:

Advisor.Manager.refresh_customizations();
open_system('AdvisorCustomizationExample.slx');

9. Open the Model Advisor.

Observe these checks, which reflect the settings that you chose in the Model Advisor Configuration
Editor:

• The Modeling Standards for MAB > Naming Conventions > Content > Check character
usage in block names check is dimmed and the check box is selected. This check will always
execute in a Model Advisor analysis and, because it is dimmed, you cannot choose to exclude it
from the analysis.

• The Modeling Standards for MAB > Naming Conventions > Content > Check length of
subsystem names check is dimmed and the check box is not selected. This check will not be
included in the analysis and, because it is dimmed, you cannot select it for inclusion in the
analysis.

10. Check the box beside the Modeling Standards for MAB > Simulink > Diagram Appearance
> Check whether block names appear below blocks check.

11. To run the Model Advisor analysis, right-click on the Model Advisor Standards for MAB root
node and select Run Selected Checks.

12. Click on the following checks and review the Model Advisor analysis results:

• The Modeling Standards for MAB > Naming Conventions > Content > Check character
usage in block names check is marked with a warning icon and the results specify the check
violation is in the Gain block.

• There are no results for the Modeling Standards for MAB > Naming Conventions > Content
> Check length of subsystem check because it could not be selected for the analysis.

• The Modeling Standards for MAB > Simulink > Diagram Appearance > Check whether
block names appear below blocks check is marked with a fail icon. This behavior is intended;
you specified this check settings by using the Model Advisor Configuration Editor.

See Also
ModelAdvisor.setDefaultConfiguration | ModelAdvisor.Check

7 Model Advisor Customization

7-10

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Customize the Configuration of the Model Advisor Overview” on page 7-2
• “Update the Environment to Include Your Custom Configuration” on page 7-19
• “Load and Associate a Custom Configuration with a Model” on page 7-20

 Use the Model Advisor Configuration Editor to Customize the Model Advisor

7-11

Programmatically Customize Tasks and Folders for the Model
Advisor

Customization File Overview
The sl_customization.m file contains a set of functions for registering and defining custom
checks, tasks, and groups. To set up the sl_customization.m file, follow the guidelines in this
table.

Note If the By Product folder is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

Function Description Required or Optional
sl_customization() Registers custom checks and tasks,

folders with the Simulink
customization manager at startup.
See “Define Custom Model Advisor
Checks” on page 6-45.

Required for customizations to the
Model Advisor.

One or more check definitions Defines custom checks. See “Define
Custom Model Advisor Checks” on
page 6-45.

Required for custom checks and to
add custom checks to the By
Product folder.

One or more task definitions Defines custom tasks. See “Define
Custom Tasks” on page 7-13.

Required to add custom checks to
the Model Advisor, except when
adding the checks to the By
Product folder. Write one task for
each check that you add to the
Model Advisor.

One or more groups Defines custom groups. See “Define
Custom Tasks” on page 7-13.

Required to add custom tasks to
new folders in the Model Advisor,
except when adding a new
subfolder to the By Product folder.
Write one group definition for each
new folder.

Register Tasks and Folders
Create sl_customization Function

To add tasks and folders to the Model Advisor, create the sl_customization.m file on your
MATLAB path. Then create the sl_customization() function in the sl_customization.m file on
your MATLAB path.

Tip

• You can have more than one sl_customization.m file on your MATLAB path.

7 Model Advisor Customization

7-12

• Do not place an sl_customization.m file that customizes the Model Advisor in your root
MATLAB folder or its subfolders, except for the matlabroot/work folder. Otherwise, the Model
Advisor ignores the customizations that the file specifies.

The sl_customization function accepts one argument, a customization manager object, as in this
example:

function sl_customization(cm)

The customization manager object includes methods for registering custom checks, tasks, and
folders. Use these methods to register customizations specific to your application, as described in the
sections that follow.

Register Tasks and Folders

The customization manager provides the following methods for registering custom tasks and folders:

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the By Task folder of
the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function that defines the checks
to add to the Model Advisor as instances of the ModelAdvisor.FactoryGroup class.

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

Registers the tasks and folders that you define in taskDefinitionFcn to the folder in the Model
Advisor that you specify using the ModelAdvisor.Root.publish method or the
ModelAdvisor.Group class.

The taskDefinitionFcn argument is a handle to the function that defines custom tasks and
folders. Simulink adds the checks and folders to the Model Advisor as instances of the
ModelAdvisor.Task or ModelAdvisor.Group classes.

The following example shows how to register custom tasks and folders:

Note If you add custom checks within the sl_customization.m file, include methods for
registering the checks in the sl_customization function.

Define Custom Tasks
Add Check to Custom or Multiple Folders Using Tasks

You can use custom tasks for adding checks to the Model Advisor, either in multiple folders or in a
single, custom folder. You define custom tasks in one or more functions that specify the properties of
each instance of the ModelAdvisor.Task class. Define one instance of this class for each custom
task that you want to add to the Model Advisor. Then register the custom task. The following sections
describe how to define custom tasks.

To add a check to multiple folders or a single, custom folder:

 Programmatically Customize Tasks and Folders for the Model Advisor

7-13

1 Create a check using the ModelAdvisor.Check class.
2 Register a task wrapper for the check.
3 If you want to add the check to folders that are not already present, register and create the

folders using the ModelAdvisor.Group class.
4 Add a check to the task using the ModelAdvisor.Task.setCheck method.
5 Add the task to each folder using the ModelAdvisor.Group.addTask method and the task ID.

Create Custom Tasks Using MathWorks Checks

You can add MathWorks checks to your custom folders by defining the checks as custom tasks. When
you add the checks as custom tasks, you identify checks by the check ID.

To find MathWorks check IDs:

1 In the hierarcy, navigate to the folder that contains the MathWorks check.
2 In the left pane of the Model Advisor, select the check.
3 Right-click the check name and select Send Check ID to Workspace. The ID is displayed in the

Command Window and sent to the base workspace.
4 Select and copy the Check ID of the check that you want to add from the Command Window as

a task.

Display and Enable Tasks

The Visible, Enable, and Value properties interact the same way for tasks as they do for checks.

Define Where Tasks Appear

You can specify where the Model Advisor places tasks within the Model Advisor using the following
guidelines:

• To place a task in a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To place a task in a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup
class.

Task Definition Function

The following example shows a task definition function. This function defines three tasks.

Define Custom Folders
About Custom Folders

Use folders to group checks in the Model Advisor by functionality or usage. You define custom folders
in:

• A factory group definition function that specifies the properties of each instance of the
ModelAdvisor.FactoryGroup class.

• A task definition function that specifies the properties of each instance of the
ModelAdvisor.Group class.

7 Model Advisor Customization

7-14

Define one instance of the group classes for each folder that you want to add to the Model Advisor.

Add Custom Folders

To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or ModelAdvisor.FactoryGroup classes.
2 Register the folder.

Define Where Custom Folders Appear

You can specify the location of custom folders within the Model Advisor using the following
guidelines:

• To define a new folder in the Model Advisor Task Manager, use the ModelAdvisor.Group
class.

• To define a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup class.

Note To define a new folder in the By Product folder, use the ModelAdvisor.Root.publish
method within a custom check. If the By Product folder is not displayed in the Model Advisor
window, select Show By Product Folder from the Settings > Preferences dialog box.

Group Definition

The following examples shows a group definition. The definition places the tasks inside a folder called
My Group under the Model Advisor root. The task definition function includes this group definition.

The following example shows a factory group definition function. The definition places the checks into
a folder called Demo Factory Group inside of the By Task folder.

See Also
ModelAdvisor.Check | ModelAdvisor.FactoryGroup | ModelAdvisor.Group |
ModelAdvisor.Task | ModelAdvisor.Procedure | publish

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Customize the Configuration of the Model Advisor Overview” on page 7-2

 Programmatically Customize Tasks and Folders for the Model Advisor

7-15

Programmatically Create Procedural-Based Configurations
You can create a procedural-based configuration that allows you to specify the order in which you
make changes to your model. You organize checks into procedures using the procedures API. A check
in a procedure does not run until the previous check passes. A procedural-based configuration runs
until a check fails, requiring you to modify the model to pass the check and proceed to the next
check. Changes you make to your model to pass the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Customize the Configuration of the Model Advisor Overview” on page
7-2.

2 Decide on order of changes to your model.
3 Identify checks that provide information about the modifications you want to make to your model.

For example, if you want to modify your model optimization settings, the Check optimization
settings check provides information about the settings. You can use custom checks and checks
provided by MathWorks.

4 (Optional) Author custom checks in a customization file. See “Create Model Advisor Checks”.
5 Organize the checks into procedures for a procedural-based configuration:

a Create procedures by using the procedure API. For detailed information, see “Create
Procedural-Based Configurations” on page 7-16.

b Create the custom configuration “Use the Model Advisor Configuration Editor to Customize
the Model Advisor” on page 7-3

.
6 (Optional) Deploy the custom configurations to your users. For detailed information, see “Deploy

Custom Configurations” on page 7-22.
7 Verify that models comply with modeling guidelines. For detailed information, see “Run Model

Advisor Checks and Review Results” on page 3-4.

Create Procedural-Based Configurations
Create Procedures Using the Procedures API

You create procedures with the ModelAdvisor.Procedure class API. You first add the checks to
tasks, which are wrappers for the checks. The tasks are added to procedures.

Note When creating procedural checks, be aware of potential conflicts with the checks. Verify that it
is possible to pass both checks.

You use the ModelAdvisor.Procedure class to create procedural checks.

1 Add each check to a task using the ModelAdvisor.Task.setCheck method. The task is a
wrapper for the check. You cannot add checks directly to procedures.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask method.

7 Model Advisor Customization

7-16

Define Procedures

You define procedures in a procedure definition function that specifies the properties of each instance
of the ModelAdvisor.Procedure class. Define one instance of the procedure class for each
procedure that you want to add to the Model Advisor. Then register the procedure using the
ModelAdvisor.Root.register method.

You can add subprocedures or tasks to a procedure. The tasks are wrappers for checks.

• Use the ModelAdvisor.Procedure.addProcedure method to add a subprocedure to a
procedure.

• Use the ModelAdvisor.Procedure.addTask method to add a task to a procedure.

The following code example adds subprocedures to a procedure:

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub1');
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub2');
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub3');

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%register the procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks
MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTask1');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask(MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAT1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

 Programmatically Create Procedural-Based Configurations

7-17

You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method. The following code example adds procedures to a
group:

%Create three procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure1');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3');

%Create a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure(MAG, MAP2);
addProcedure(MAG, MAP3);

%register the group and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

See Also
ModelAdvisor.Check | ModelAdvisor.Procedure

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Customize the Configuration of the Model Advisor Overview” on page 7-2

7 Model Advisor Customization

7-18

Update the Environment to Include Your Custom Configuration
To make custom configuration available for use by the Model Advisor, you need to first update your
Simulink environment to refresh the Model Advisor cache. This includes the creation of new or
modifications to existing:

• .json files by using the Model Advisor Configuration Editor. See “Use the Model Advisor
Configuration Editor to Customize the Model Advisor” on page 7-3.

• sl_customization.m files for custom Model Advisor checks. See “Create Model Advisor
Checks”.

To update your environment:

1 If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor
b Clear the data associated with the previous Model Advisor session by removing the slprj

folder from your code generation folder.
2 In the MATLAB command line, enter:

Advisor.Manager.refresh_customizations
3 Open your model
4 In the Modeling tab, select Model Advisor to open the Model Advisor. If you have customized

the configuration by using the Model Advisor Configuration Editor, load and verify the
configuration as described in “Load and Associate a Custom Configuration with a Model” on page
7-20.

 Update the Environment to Include Your Custom Configuration

7-19

Load and Associate a Custom Configuration with a Model
Custom configurations allow you to specify which checks run during Model Advisor analysis. When
you load a custom configuration, the Model Advisor uses the folders and checks specified by the
configuration. You can also associate a custom configuration with your model so that the Model
Advisor uses that configuration each time you open that model.

For example, to create a custom configuration and associate the configuration with a model
newModel:

1 Set your current folder to a writeable directory.
2 Create and save a new model called newModel. In the MATLAB Command Window, enter:

new_system("newModel");
save_system("newModel");

3 Open the Model Advisor by entering:

modeladvisor("newModel")
4 In the Model Advisor, click Open > Open Configuration Editor to open the Model Advisor

Configuration Editor.

You can use the Model Advisor Configuration Editor to specify the folders and checks that you
want to include in the Model Advisor. For information on how to create a custom configuration,
see “Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3.

5 In the Model Advisor Configuration Editor, click Save As to save a new, custom configuration file.
For this example, save the configuration file as customConfig.json. The Model Advisor
Configuration Editor prompts you to save the configuration as the default configuration. For this
example, click No.

6 Update your Simulink environment to include the custom configuration file. At the MATLAB
command line, enter:

Advisor.Manager.refresh_customizations

For more information, see “Update the Environment to Include Your Custom Configuration” on
page 7-19.

7 Re-open the Model Advisor for the model newModel. In the MATLAB Command Window, enter:

modeladvisor("newModel")
8 In the Model Advisor, click Open > Load Configuration and select the custom configuration file

customConfig.json to load the configuration file into the Model Advisor.

If the Model Advisor is unable to load a check listed in your configuration, the Model Advisor
returns a warning in the MATLAB Command Window. To turn off these warnings, follow the steps
listed in “Suppress Warning Message for Missing Checks” on page 7-7.

9 In the Model Advisor Check Selector pane, you can verify that you see the folders and checks
specified in the custom configuration. If you expect a folder or check to appear in the Model
Advisor and it does not, see “Use the Model Advisor Configuration Editor to Customize the Model
Advisor” on page 7-3 and “Update the Environment to Include Your Custom Configuration” on
page 7-19.

10 If you want the Model Advisor to use this configuration each time you open the model newModel,
associate the loaded configuration file with the model by using one of these approaches:

• In the Model Advisor, click Open > Associate Configuration to Model. The Model Advisor
opens the Configuration Parameters dialog box for the model. The Model Advisor
configuration file parameter lists the configuration file associated with the model. Click OK.

7 Model Advisor Customization

7-20

• In the MATLAB Command Window, provide the model name and configuration file name as
inputs to the function ModelAdvisor.setModelConfiguration.

ModelAdvisor.setModelConfiguration("newModel","customConfig.json");

For Model Advisor configuration files created in R2021b or earlier, use R2022a or later to open
and re-save the configuration file in the Model Advisor Configuration Editor before associating
the file with a model.

11 You can view the Model Advisor configuration file associated with the model by entering:

ModelAdvisor.getModelConfiguration("newModel")
12 To return to your default configuration, click Open > Restore Default Configuration.

For information on how to restore the default shipping configuration or set a new default
configuration, see “Use the Model Advisor Configuration Editor to Customize the Model Advisor”
on page 7-3.

Note The Model Advisor looks for configuration files in the following order:

1 The configuration that you specify by using the configfile input argument of the
modeladvisor function.

2 The configuration associated with the model.
3 The default configuration. The default configuration is either the default shipping configuration

or the default configuration that you set. For more information on the default configuration, see
“Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3.

The Model Advisor loads the first configuration file that it finds and ignores other configuration files.

 Load and Associate a Custom Configuration with a Model

7-21

Deploy Custom Configurations
When you create a custom configuration, often you deploy the custom configuration to your
development group. Deploying the custom configuration allows your development group to review
models using the same checks. You can deploy custom configurations whether you created the
configuration using the Model Advisor Configuration Editor or within the customization file.

To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more than one file.

If You... Using the... Distribute...
Created custom Model Advisor
checks

Customization file • sl_customization.m
• Files containing check and

action callback functions (if
separate)

Created custom Model Advisor
configuration files

Model Advisor Configuration
Editor

Configuration .json file

1 Distribute the files and tell the user to include these files on the MATLAB path.
2 Instruct the user to load the custom configuration.

7 Model Advisor Customization

7-22

Create and Deploy a Model Advisor Custom Configuration
To check that a model meets the standards and modeling guidelines of your company, you can
customize the Model Advisor. This example shows you how to add custom checks to the Model
Advisor and remove shipping checks that you do not require. You can save the custom check
configuration and deploy it to others in your development group. Deploying a custom configuration
allows your development group to review models using the same set of checks.

Define Custom Checks

This example defines four types of custom checks:

• An edit-time check that provides a fix action.
• A check that runs in only the Model Advisor and groups results by blocks and subsystems and

provides a fix action.
• A check that runs only in the Model Advisor and verifies model configuration parameter settings.
• An edit-time check that specifies a constraint for a block parameter setting and provides a fix

action.

The example files include the sl_customization.m file. This file contains the sl_customization
function, which contains calls to functions that define the custom checks. Open and inspect the
sl_customization.m file.

function sl_customization(cm)
% SL_CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorChecks
defineEditTimeCheck
defineDetailStyleCheck;
defineConfigurationParameterCheck;
defineNewBlockConstraintCheck;

The sl_customization function accepts a customization manager object that includes the
addModelAdvisorCheckFcn method for registering custom checks. The input to this method is a
handle to a function, defineModelAdvisorChecks, which contains calls to the four check definition
functions that correspond to the four custom checks.

Edit-Time Check with Fix

The defineEditTimeCheck.m file contains the defineEditTimeCheck check definition function,
which defines a check that checks whether Inport and Outport blocks have certain colors depending
on their output data types. This check must check other edited blocks, but it does not have to check
for affected blocks at the same level or across the entire model hierarchy. This check provides a fix
that updates the color of the blocks that do not have the correct colors. The name of this check is
Check color of Inport and Outport blocks. This check runs at edit-time and in the Model Advisor.
Open and inspect the defineEditTimeCheck.m file.

 Create and Deploy a Model Advisor Custom Configuration

7-23

function defineEditTimeCheck

% Check the background color of Inport and Outport blocks.
rec = ModelAdvisor.Check("advisor.edittimecheck.PortColor");
rec.Title = 'Check color of Inport and Outport blocks';
rec.CallbackHandle = 'MyEditTimeChecks.PortColor';
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec,'Demo');

The edit-time check has a class definition, PortColor, that derives from the
ModelAdvisor.EdittimeCheck base class. For more information on how to create this type of
check, see “Define Edit-Time Checks to Comply with Conditions that You Specify with the Model
Advisor” on page 6-9. Create a folder named +MyEditTimeChecks and save PortColor.m to this
folder.

copyfile PortColor.m* +MyEditTimeChecks

Open and inspect the PortColor.m file.

classdef PortColor < ModelAdvisor.EdittimeCheck
 % Check that ports conform to software design standards for background color.
 %
 % Background Color Data Types
 % orange Boolean
 % green all floating-point
 % cyan all integers
 % Light Blue Enumerations and Bus Objects
 % white auto
 %

 methods
 function obj=PortColor(checkId)
 obj=obj@ModelAdvisor.EdittimeCheck(checkId);
 obj.traversalType = edittimecheck.TraversalTypes.BLKITER;
 end

 function violation = blockDiscovered(obj, blk)
 violation = [];
 if strcmp(get_param(blk,'BlockType'),'Inport') || strcmp(get_param(blk,'BlockType'),'Outport')

 dataType = get_param(blk,'OutDataTypeStr');
 currentBgColor = get_param(blk,'BackgroundColor');

 if strcmp(dataType,'boolean')
 if ~strcmp(currentBgColor, 'orange')
 % Create a violation object using the ModelAdvisor.ResultDetail class.
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with Boolean outputs should be orange.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif any(strcmp({'single','double'},dataType))
 if ~strcmp(currentBgColor, 'green')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));

7 Model Advisor Customization

7-24

 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with floating-point outputs should be green.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif any(strcmp({'uint8','uint16','uint32','int8','int16','int32'}, dataType))
 if ~strcmp(currentBgColor, 'cyan')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with integer outputs should be cyan.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType,'Bus:')
 if ~strcmp(currentBgColor, 'lightBlue')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with bus outputs should be light blue.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType,'Enum:')
 if ~strcmp(currentBgColor, 'lightBlue')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with enumeration outputs should be light blue.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 elseif contains(dataType, 'auto')
 if ~strcmp(currentBgColor, 'white')
 violation = ModelAdvisor.ResultDetail;
 ModelAdvisor.ResultDetail.setData(violation,'SID',Simulink.ID.getSID(blk));
 violation.CheckID = obj.checkId;
 violation.Description = 'Inport/Outport blocks with auto outputs should be white.';
 violation.title = 'Port Block Color';
 violation.ViolationType = 'Warning';
 end
 end
 end
 end

 function violation = finishedTraversal(obj)
 violation = [];
 end

 function success = fix(obj, violation)
 success = true;
 dataType = get_param(violation.Data,'OutDataTypeStr');
 if strcmp(dataType,'boolean')
 set_param(violation.Data,'BackgroundColor','orange');
 elseif any(strcmp({'single','double'},dataType))
 set_param(violation.Data,'BackgroundColor','green');
 elseif any(strcmp({'uint8','uint16','uint32','int8','int16','int32'}, dataType))
 set_param(violation.Data,'BackgroundColor','cyan');

 Create and Deploy a Model Advisor Custom Configuration

7-25

 elseif contains(dataType,'Bus:') || contains(dataType,'Enum:')
 set_param(violation.Data,'BackgroundColor','lightBlue');
 elseif contains(dataType,'auto')
 set_param(violation.Data,'BackgroundColor','white');
 end
 end
 end
end

Model Advisor Check with Fix

The defineDetailStyleCheck.m file contains the defineDetailStyleCheck check definition
function, which defines a check that lists blocks whose names are not displayed below the blocks.
This check provides a fix that moves those names below the blocks. The name of this check is Check
whether block names appear below blocks. This check authoring style is for checks that only run
in the Model Advisor. Open and inspect the defineDetailStyleCheck.m file.

function defineDetailStyleCheck

mdladvRoot = ModelAdvisor.Root;

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';
rec.setCallbackFcn(@DetailStyleCallback,'None','DetailStyle');
% Create ModelAdvisor.Action object for setting fix operation.
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@ActionCB);
myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks';
rec.setAction(myAction);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

end

% -----------------------------
% This callback function uses the DetailStyle CallbackStyle type.
% -----------------------------
function DetailStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% Find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below the block.';
 mdladvObj.setCheckResultStatus(true);
else

 for i=1:numel(violationBlks)
 ElementResults(1,i) = ModelAdvisor.ResultDetail;
 end
 for i=1:numel(ElementResults)

7 Model Advisor Customization

7-26

 ModelAdvisor.ResultDetail.setData(ElementResults(i), 'SID',violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);
end

% -----------------------------
% This action callback function changes the location of block names.
% -----------------------------
function result = ActionCB(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);
end

This check uses the setCallbackFcn type of DetailStyle, which produces default formatting, so
that you do not have to use the ModelAdvisor.FormatTemplate or the other Model Advisor
formatting APIs to format the results that appear in the Model Advisor. For more information on how
to create this type of check definition function, see “Fix a Model to Comply with Conditions that You
Specify with the Model Advisor” on page 6-21.

Model Configuration Parameter Settings Check

The defineConfigurationParameterCheck.m file contains the
defineConfigurationParameterCheck check definition function, which defines a check that
identifies model configuration parameter settings that might impact MISRA C:2012 compliant code
generation. The name of this check is Check model configuration parameters.

This check requires a supporting XML data file that must be on the MATLAB path and contain the
model configuration parameter settings that you want to check. For this example, that file is
configurationParameterDataFile.xml. For more information on how to create this check
type, see “Create Model Advisor Check for Model Configuration Parameters” on page 6-27.

Open and inspect the defineConfigurationParameterCheck.m file.

function defineConfigurationParameterCheck

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.configurationParameter');
rec.Title = 'Check model configuration parameters';
rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
rec.TitleTips = 'Identify configuration parameters that might impact MISRA C:2012 compliant code generation.';

 Create and Deploy a Model Advisor Custom Configuration

7-27

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Data File';
inputParam1.Value = 'configurationParameterDataFile.xml';
inputParam1.Type = 'String';
inputParam1.Description = 'Name or full path of XML data file.';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});

% -- set fix operation
act = ModelAdvisor.Action;
act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback...
 (task)));
act.Name = 'Modify Settings';
act.Description = 'Modify model configuration settings.';
rec.setAction(act);

% publish check into Demo folder.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');

end

Block Parameter Constraint Check

The defineNewBlockConstraintCheck.m file contains the defineNewBlockConstraintCheck
check definition function, which defines a check that identifies Logical Operator blocks that do not
have a rectangular shape. The name of this check is Check icon shape of Logical Operator
blocks.

A block parameter constraint check supports edit-time checking. For more information on this check
type, see “Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters” on
page 6-38.

Open and inspect the defineNewBlockConstraintCheck.m file.

function defineNewBlockConstraintCheck

rec = Advisor.authoring.createBlockConstraintCheck('com.mathworks.sample.blockConstraint',...
 'Constraints',@createBlockConstraints); % constraint creation is part of block constraint check definition
rec.Title = 'Check icon shape of Logical Operator blocks';
rec.TitleTips = 'Checks icon shape of Logical Operator blocks. Icon shape of Logical Operator should be rectangular.';

% Publish check into Demo folder.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');

end

function constraints = createBlockConstraints()

% Create block constraints.
c1 = Advisor.authoring.PositiveBlockParameterConstraint;
c1.ID = 'ID_c1';
c1.BlockType = 'Logic';
c1.ParameterName = 'IconShape';

7 Model Advisor Customization

7-28

c1.SupportedParameterValues = {'rectangular'};
c1.ValueOperator = 'eq';

constraints = {c1};

end

The createBlockConstraints function defines the block constraint c1. The
Advisor.authoring.createBlockConstraintCheck function has a 'Constraints' name-
value argument that calls the constraints creation function createBlockConstraints.

View Custom Checks in the Model Advisor

To confirm that your custom checks are available, open the Model Advisor.

1. In order for your custom checks to be visible in the Model Advisor, you must refresh the Model
Advisor check information cache. At the MATLAB command prompt, enter:

Advisor.Manager.refresh_customizations();

2. Open the example model.

open_system('AdvisorCustomizationExample.slx');

3. On the Modeling tab, open the Model Advisor. You can also open the Model Advisor by entering
this command at the MATLAB command prompt:

modeladvisor('AdvisorCustomizationExample.slx');

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

4. Expand the By Product > Demo folder. In the check definition functions, the publish command
adds the checks to the By Product > Demo folder.

 Create and Deploy a Model Advisor Custom Configuration

7-29

Specify and Deploy a Model Advisor Custom Configuration

To specify which checks to include in the Model Advisor and which checks to use during edit-time
checking, use the Model Advisor Configuration Editor.

1. To open the Configuration Editor, in the Model Advisor, click Open > Open Configuration Editor.

2. To add or remove checks and folders, select from the options in the Edit section of the Model
Advisor Configuration Editor.

3. To save a configuration, select Save. A window opens and prompts you to save the configuration as
a JSON file. For this example, you do not have to save the configuration, because the file
demoConfiguration.json file contains the four custom checks for this example.

4. Close the model and the Model Advisor Configuration Editor.

bdclose;

Associate a Custom Check Configuration with a Model and Address Check Issues

To address check issues, first associate the configuration with a model. Then, you can address issues
during edit-time and in the Model Advisor.

1. Open the example model.

7 Model Advisor Customization

7-30

open_system('AdvisorCustomizationExample.slx');

2. Associate the custom configuration, demoConfiguration.json, with the model. When you
associate a custom configuration with a model, the model uses the same check configuration every
time you open a model. Click the Modeling tab and select Model Advisor > Edit-Time Checks. In
the Configuration Parameters dialog box, specify the path to the configuration file for the Model
Advisor configuration file parameter. Alternatively, enter this command at the command prompt:

ModelAdvisor.setModelConfiguration('AdvisorCustomizationExample', 'demoConfiguration.json');

3. Turn on edit-time checking by clicking the Modeling tab and selecting Model Advisor > Edit-
Time Checks. The Configuration Parameters dialog box opens. Select the Edit-Time Checks
parameter. Alternatively, you can enter this command at the command prompt:

edittime.setAdvisorChecking('AdvisorCustomizationExample','on');

At the top level of the model, the two Inport blocks have an output data type of int32. The blocks
produce edit-time warnings because they should be cyan. The Outport block does not produce a
warning because it has an auto data type and is white.

4. For each Inport block, click the edit-time warning window. Then click Fix. The color of the blocks
changes to cyan and the warning goes away.

 Create and Deploy a Model Advisor Custom Configuration

7-31

5. The Logical Operator block produces a warning because it should have a rectangular shape. Click
the edit-time warning window and then click Fix. The shape of the Logical Operator block changes to
a rectangle, and the warning goes away.

6. Now that you have addressed the edit-time check warnings, open the Model Advisor to address any
remaining check issues.

modeladvisor('AdvisorCustomizationExample.slx');

Model Advisor is removing the existing report.

7. The Model Advisor contains the four checks in the custom configuration. Click Run Checks. The
two checks that you addressed during edit-time pass. The other two checks produce warnings.

8. Click the Check whether block names appear below blocks check. To apply a fix and resolve
the warnings, in the right pane, click Fix.

9. Click the Check model configuration parameters check. To apply a fix and resolve the
warnings, click Fix.

10. Rerun the checks. They now pass.

11. Close the model and the Model Advisor.

bdclose;

12. Remove the files from your working directory. Refresh the Model Advisor check information cache
by entering this command:

Advisor.Manager.refresh_customizations

7 Model Advisor Customization

7-32

Programmatically Run a Model Advisor Custom Configuration and View Results

You can programmatically run a Model Advisor configuration and then open the results in the Model
Advisor.

1. Call the ModelAdvisor.run function.

SysResultObjArray = ModelAdvisor.run({'AdvisorCustomizationExample'},...
'Configuration','demoConfiguration.json');

2. View the results in the Model Advisor:

viewReport(SysResultObjArray{1},'MA')

3. Click Continue in the dialog box. You can now apply fixes and resolve warnings.

4. Close the model and the Model Advisor.

bdclose;

5. Remove the files from your working directory. Refresh the Model Advisor check information cache
by entering this command:

Advisor.Manager.refresh_customizations

See Also
ModelAdvisor.Check | ModelAdvisor.EdittimeCheck

More About
• “Define Custom Model Advisor Checks” on page 6-45
• “Justify Violated Blocks from the Model Advisor Check Analysis” on page 3-16
• “Define Custom Edit-Time Checks that Fix Issues in Architecture Models” on page 6-17
• “Run Custom Model Advisor Checks on Architecture Models” on page 3-106

 Create and Deploy a Model Advisor Custom Configuration

7-33

Model Slicer

• “Highlight Functional Dependencies” on page 8-2
• “Highlight Dependencies for Multiple Instance Reference Models” on page 8-8
• “Refine Highlighted Model” on page 8-12
• “Refine Dead Logic for Dependency Analysis” on page 8-22
• “Create a Simplified Standalone Model” on page 8-28
• “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 8-29
• “Simplify a Standalone Model by Inlining Content” on page 8-36
• “Workflow for Dependency Analysis” on page 8-38
• “Configure Model Highlight and Sliced Models” on page 8-40
• “Model Slicer Considerations and Limitations” on page 8-43
• “Using Model Slicer with Stateflow” on page 8-49
• “Isolating Dependencies of an Actuator Subsystem” on page 8-51
• “Isolate Model Components for Functional Testing” on page 8-55
• “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63
• “Simplification of Variant Systems” on page 8-65
• “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer” on page 8-66
• “Refine Highlighted Model Slice by Using Model Slicer Data Inspector” on page 8-74
• “Debug Slice Simulation by Using Fast Restart Mode” on page 8-81
• “Isolate Referenced Model for Functional Testing” on page 8-88
• “Analyze the Dead Logic” on page 8-92
• “Investigate Highlighted Model Slice by Using Model Slicer Data Inspector” on page 8-97
• “Programmatically Generate I/O Dependency Matrix” on page 8-103
• “Observe Impact of Simulink Parameters Using Model Slicer” on page 8-105

8

Highlight Functional Dependencies
Large models often contain many levels of hierarchy, complicated signals, and complex mode logic.
You can use Model Slicer to understand which parts of your model are significant for a particular
behavior. This example shows how to use Model Slicer to explore the behavior of the
sldvSliceClimateControlExample model. You first select an area of interest, and then highlight
the related blocks in the model. In this example, you trace the dependency paths upstream of Out1 to
highlight which portions of the model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample
3 To open the Model Slice Manager, on the Apps tab, under Model Verification, Validation, and

Test gallery, click Model Slicer.

When you open the Model Slice Manager, Model Slicer compiles the model. You then configure
the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Slice
• Color: (magenta)
• Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from a block in
your model, depending on which direction you want to trace the signal propagation.

6 Add Out1 as a starting point. In the model, right-click Out1 and select Model Slicer > Add as
Starting Point.

8 Model Slicer

8-2

The Model Slicer now highlights the upstream constructs that affect Out1.

 Highlight Functional Dependencies

8-3

If you create two slice configurations, you can highlight the intersecting portions of their highlights.
Create a new slice configuration and view the intersecting portions of the slice configuration you
created above and the new slice configuration:

1 Create a new slice configuration with the following properties

• Name: Out3Slice
• Color: (red)
• Signal Propagation: upstream
• Starting point: Out3

2 In the Model Slice Manager, select both the Out1Slice slice configuration and the Out3Slice
slice configuration.

8 Model Slicer

8-4

Model Slicer highlights portions of the model as follows:

• The portions of the model that are exclusively upstream of Out1 are highlighted in cyan.
• The portions of the model that are exclusively upstream of Out3 are highlighted in red.
• The portions of the model that are upstream of both Out1 and Out3 are highlighted in black.

 Highlight Functional Dependencies

8-5

After you highlight a portion of your model, you can then refine the highlighted model to an area of
interest. Or, you can create a simplified standalone model containing only the highlighted portion of
your model.

To view the details of the highlighted model in web view, click Export to Web. The web view HTML
file is stored in <current folder>\<model_name>\webview.html.

8 Model Slicer

8-6

See Also

More About
• “Refine Highlighted Model” on page 8-12
• “Create a Simplified Standalone Model” on page 8-28
• “Model Slicer Considerations and Limitations” on page 8-43

 Highlight Functional Dependencies

8-7

Highlight Dependencies for Multiple Instance Reference
Models

To highlight the functional dependencies in a Simulink model with multiple instances of a referenced
model, use Model Slicer. You can use Model Slicer on a Simulink model that contains single or
multiple references to a same model in normal simulation mode.

This example shows the behavior of Model Slicer when there are multiple instances of the referenced
model. The slslicerdemo_multi_instance model consists of sldemo_mdlref_counter
referenced two times with different inputs during the course of the signal flow transition.

1. Open the model slslicerdemo_multi_instance.slx.

open_system('slslicerdemo_multi_instance');

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

3. In the Model Slicer window, click Add all outports. This sets OutA and OutB as starting points.

4. Ensure that the Signal Propagation is set to upstream.

5. In the Simulation time window section, click Run simulation.

8 Model Slicer

8-8

6. In the simulation time window, click OK. The model simulation starts.

 Highlight Dependencies for Multiple Instance Reference Models

8-9

7. The simulated model highlights the upstream dependency of the outports OutA and OutB.

You can notice that the referenced model in both the instances shows different signal propagations
highlighted by Simulink Slicer for which the signal travels.

8 Model Slicer

8-10

8. To generate the slice, click Generate Slice.

More About

• “Highlight Functional Dependencies” on page 8-2
• “Model Slicer Considerations and Limitations” on page 8-43

 Highlight Dependencies for Multiple Instance Reference Models

8-11

Refine Highlighted Model
After you highlight a model using Model Slicer, you can refine the dependency paths in the
highlighted portion of the model. Using Model Slicer, you can refine a highlighted model by including
only those blocks used in a portion of a simulation time window, or by excluding blocks or certain
inputs of switch blocks. By refining the highlighted portion of your model, you can include only the
relevant parts of your model.

In this section...
“Define a Simulation Time Window” on page 8-12
“Exclude Blocks” on page 8-16
“Exclude Inputs of a Switch Block” on page 8-19

Define a Simulation Time Window
You can refine a highlighted model to include only those blocks used in a portion of a simulation time
window. Defining the simulation time window holds some switch blocks constant, and as a result
removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample
3 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

When you open the Model Slice Manager, Model Slicer compiles the model. You then configure
the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Simulation
• Color: (cyan)
• Signal propagation: upstream

8 Model Slicer

8-12

6 In the top level of the model, select the Out1 block as the slice starting point. Right-click the
Out1 block and select Model Slicer > Add as Starting Point.

The model is highlighted.
7 In the Model Slice Manager, select Simulation time window.
8

To specify the stop time of the simulation time window, click the run simulation button in the
Model Slice Manager.

9 Set the Stop time to 10.
10 Click OK to start the simulation.

 Refine Highlighted Model

8-13

The path is restricted to only those blocks that are active until the stop time that you entered.

8 Model Slicer

8-14

11 To highlight the model for a defined simulation time window, set the Stop time to 5. Click
Highlight.

12 To see how this constraint affects the highlighted portion of the model, open the
Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that are active in
the simulation time window that you specified.

 Refine Highlighted Model

8-15

After you refine your highlighted model to include only those blocks used in a portion of a simulation
time window, you can then “Create a Simplified Standalone Model” on page 8-28 incorporating the
highlighted portion of your model.

Exclude Blocks
You can refine a highlighted model to exclude blocks from the analysis. Excluding a block halts the
propagation of dependencies, so that signals and model items beyond the excluded block in the
analysis direction are ignored.

Exclusion points are useful for viewing a simplified set of model dependencies. For example, control
feedback paths create wide dependencies and extensive model highlighting. You can use an exclusion
point to restrict the analysis, particularly if your model has feedback paths.

Note Simplified standalone model creation is not supported for highlighted models with exclusion
points.

1 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
2

To add a new slice configuration, click the add new button .
3 Set the slice properties:

8 Model Slicer

8-16

• Name: Out1Excluded
• Color: (red)
• Signal Propagation: upstream

4 In the top level of the model, select the Out1 block as the slice starting point. Right-click the
Out1 block and select Model Slicer > Add as Starting Point.

The model is highlighted.
5 To open the subsystem, double-click Refrigeration.
6 Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion Point.

The blocks that are exclusively upstream of the Fan switch block are no longer highlighted. The
DT Fan Data Store Read block is no longer highlighted.

 Refine Highlighted Model

8-17

7 To see how this constraint affects the highlighted portion of the model, view the parent system.

The DSM fan temp Data Store Memory block and the Write2 Data Store Write block are no
longer highlighted, because the DT Fan Data Store Read in the Refrigeration subsystem no
longer accesses them.

8 Model Slicer

8-18

Exclude Inputs of a Switch Block
For complex signal routing, you can constrain the dependency analysis paths to a subset of the
available paths through switch blocks. Constraints appear in the Model Slice Manager.

Note Simplified standalone model creation is not supported for highlighted models with constrained
switch blocks.

1 Double-click Refrigeration to open the subsystem.
2 Constrain the On switch block:

• Right-click the switch block and select Model Slicer > Add Constraint.
• In the Constraints dialog box, select Port 3.
• Click OK.

The path is restricted to the Constant1 port on the switch. The blocks that are upstream of Port
1 and Port 2 of the constrained switch are no longer highlighted. Only the blocks upstream of
Port 3 are highlighted.

 Refine Highlighted Model

8-19

3 To see how this constraint affects the highlighted portion of the model, view the parent system.

See Also

More About
• “Create a Simplified Standalone Model” on page 8-28

8 Model Slicer

8-20

• “Model Slicer Considerations and Limitations” on page 8-43

 Refine Highlighted Model

8-21

Refine Dead Logic for Dependency Analysis
To refine the dead logic in your model for dependency analysis, use the Model Slicer. To provide an
accurate slice, Model Slicer leverages Simulink Design Verifier dead logic analysis to remove the
unreachable paths in the model. Model Slicer identifies the dead logic and refines the model slice for
dependency analysis. For more information on Dead logic, see “Dead Logic Detection” (Simulink
Design Verifier).

Analyze the Dead Logic
This example shows how to refine the model for dead logic. The sldvSlicerdemo_dead_logic
model consists of dead logic paths that you refine for dependency analysis.

1. Open the sldvSlicerdemo_dead_logic model.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

open_system('sldvSlicerdemo_dead_logic');

8 Model Slicer

8-22

Open the Controller subsystem and add the outport throt as the starting point.

 Refine Dead Logic for Dependency Analysis

8-23

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.

3. Click Get Dead Logic Data.

8 Model Slicer

8-24

4. Specify the Analysis time and run the analysis. You can import existing dead logic results from the
sldvData file or load existing .slslicex data for analysis. For more information, see “Refine
Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63.

 Refine Dead Logic for Dependency Analysis

8-25

8 Model Slicer

8-26

As the set input is equal to true, the False input to switch is removed for dependency analysis.
Similarly, the output of block OR is always true and removed from the model slice.

See Also

More About
• “Refine Highlighted Model” on page 8-12
• “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63

 Refine Dead Logic for Dependency Analysis

8-27

Create a Simplified Standalone Model
You can simplify simulation, debugging, and formal analysis of large and complex models by focusing
on areas of interest in your model. After highlighting a portion of your model using Model Slicer, you
can generate a simplified standalone model incorporating the highlighted portion of your original
model. Apply changes to the simplified standalone model based on simulation, debugging, and formal
analysis, and then apply these changes back to the original model.

Note Simplified standalone model creation is not supported for highlighted models with exclusion
points or constrained switch blocks. If you want to view the effects of exclusion points or constrained
switch blocks on a simplified standalone model, first create the simplified standalone model, and then
add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 8-2 and “Refine Highlighted Model” on page 8-
12.

2 In the Model Slice Manager, click Generate slice.
3 In the Select File to Write dialog box, select the save location and enter a model name.

The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.

When generating a simplified standalone model from a model highlight, you might need to refine the
highlighted model before the simplified standalone model can compile. See the “Model Slicer
Considerations and Limitations” on page 8-43 for compilation considerations.

See Also

More About
• “Configure Model Highlight and Sliced Models” on page 8-40

8 Model Slicer

8-28

Highlight Active Time Intervals by Using Activity-Based Time
Slicing

Stateflow states and transitions can be active, inactive, or sleeping during model simulation. You can
use Model Slicer to constrain model highlighting to only highlight the time intervals in which certain
Stateflow “Represent Operating Modes by Using States” (Stateflow) and “Transition Between
Operating Modes” (Stateflow) are active. Therefore, you are able to refine your area of interest to
only those portions of your model that affect model simulation during the operation of the selected
states and transitions. You can also constrain model highlighting to the intersection of the time
intervals of two or more states or transitions.

In this section...
“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page 8-29
“Activity-Based Time Slicing Limitations and Considerations” on page 8-35
“Stateflow State and Transition Activity” on page 8-35

Highlighting the Active Time Intervals of a Stateflow State or
Transition
The slslicer_fuelsys_activity_slicing model contains a fault-tolerant fuel control system. In
this tutorial, you use activity-based time slicing to refine a model highlight to only those time
intervals in which certain states and transitions are active. You must be familiar with how to
“Highlight Functional Dependencies” on page 8-2 by using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the slslicer_fuelsys_activity_slicing model.

open_system('slslicer_fuelsys_activity_slicing')
3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate controller

subsystem as a Model Slicer starting point.
4 Highlight the portions of the model that are upstream of the control logic Stateflow chart.
5 Simulate the model within a restricted simulation time window (maximum 20 seconds) to

highlight only the areas of the model upstream of the starting point and active during the time
window of interest.

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

8-29

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

1 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.
2 Navigate to the control logic Stateflow chart in the fuel rate controller subsystem.

open_system('slslicer_fuelsys_activity_slicing/fuel rate controller/control logic')
3 To constrain the model highlight to only those time intervals in which the Fueling_Mode >

Running > Low_Emissions > Warmup state is active, right-click the Warmup state and select
Model Slicer > Constrain to active time intervals for “Warmup”.

8 Model Slicer

8-30

Model Slicer is updated to highlight only those portions of the model that are active during the
time intervals in which the warmup state is active.

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

8-31

The Model Slice Manager is also updated to show the time interval in which the warmup state is
active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing that a pressure
failure occurred during the time interval in which the Warmup state was active.

8 Model Slicer

8-32

Constrain the Model Highlight to the Intersection of the Active Time Intervals of a
Stateflow State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the O2 > fail state is active.

Model Slicer is updated to highlight only those portions of the model that are active during the
time intervals in which the O2 > fail state is active. The Model Slice Manager is also updated to
show the time interval in which the O2 > fail state is active:

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

8-33

Actual simulation time: 4.83 to 20 seconds : 1 active interval
3 To constrain the highlighting to the time interval in which the O2 > fail state is active and the

normal to fail transition occurs for the Throttle chart, right-click the normal to fail
transition and add it as a constraint. Model Slicer is updated to highlight only those portions of
the model that are active during the intersection of the time intervals in which the O2 > fail
state is active and the normal to fail transition occurs for the Throttle chart.

The Model Slice Manager is also updated to show the time interval in which the O2 > fail state
is active and the normal to fail transition occurs for the Throttle chart:

8 Model Slicer

8-34

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations
For limitations and considerations of activity-based time slicing, see “Model Slicer Considerations and
Limitations” on page 8-43.

Stateflow State and Transition Activity
For more information on Stateflow state and transition activity, see “Chart Simulation Semantics”
(Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States and Transitions”
(Stateflow).

See Also

More About
• “Using Model Slicer with Stateflow” on page 8-49
• “Represent Operating Modes by Using States” (Stateflow)
• “Transition Between Operating Modes” (Stateflow)

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

8-35

Simplify a Standalone Model by Inlining Content
You can reduce file dependencies by inlining model content when you generate the sliced model.
Inlining brings functional content into the sliced model and can eliminate model references, library
links, and variant structures that are often not needed for model refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and click the

options button . Select only the block types for which you want to inline content. For
information on block-specific inlining behavior, see “Inline Content Options” on page 8-42.

This example demonstrates inlining content of a model referenced by a Model block.

1 Add the path to the example and open the model

addpath(fullfile(docroot,'toolbox','simulink','examples'))
open_system('sldvSliceEngineDynamicsExample')

2 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.
3 In the model, right-click the MAP outport and select Model Slicer > Add as Starting Point.

The path is highlighted through the Model block.

4 Create a sliced model from the highlight. In the Model Slice Manager, click the Generate slice
button.

5 Enter a file name for the sliced model.
6 The sliced model contains the highlighted model content. The model reference is removed.

8 Model Slicer

8-36

7 Click the arrow to look under the mask of the ThrottleAndManifold subsystem. The content from
the referenced model is inlined into the model in the masked subsystem.

 Simplify a Standalone Model by Inlining Content

8-37

Workflow for Dependency Analysis
In this section...
“Dependency Analysis Workflow” on page 8-38
“Dependency Analysis Objectives” on page 8-38

Model analysis includes determining dependencies of blocks, signals, and model components. For
example, to view blocks affecting a subsystem output, or trace a signal path through multiple
switches and logic. Determining dependencies can be a lengthy process, particularly for large or
complex models. Use Model Slicer as a simple way to understand functional dependencies in large or
complex models. You can also use Model Slicer to create simplified standalone models that are easier
to understand and analyze, yet retain their original context.

Dependency Analysis Workflow
The dependency analysis workflow identifies the area of interest in your model, generates a sliced
model, revises the sliced model, and incorporates those revisions in the main model.

Dependency Analysis Objectives
To identify the area of interest in your model, determine objectives such as:

• What item or items are you analyzing? Analysis begins with at least one starting point.
• In what direction does the analysis propagate? The dependency analysis propagates upstream,

downstream, or bidirectionally from the starting points.

8 Model Slicer

8-38

• What model items or paths do you want to exclude from analysis?
• What paths do you want to constrain? If your model has switches, you can constrain the switch

positions for analysis.
• Is your model a closed-loop system? If so, the highlighted portion of the model can include model

dependencies from the feedback loop. Consider excluding blocks from the feedback loop to refine
the highlighted portion of the model.

• Do you want to analyze static dependencies, or include simulation effects? Static analysis
considers model dependencies for possible simulation paths. Simulation-based analysis highlights
only paths active during simulation.

See Also

Related Examples
• “Highlight Functional Dependencies” on page 8-2
• “Refine Highlighted Model” on page 8-12
• “Create a Simplified Standalone Model” on page 8-28

 Workflow for Dependency Analysis

8-39

Configure Model Highlight and Sliced Models
In this section...
“Model Slice Manager” on page 8-40
“Model Slicer Options” on page 8-40
“Storage Options” on page 8-40
“Refresh Highlighting Automatically” on page 8-41
“Sliced Model Options” on page 8-41
“Trivial Subsystems” on page 8-41
“Inline Content Options” on page 8-42

Model Slice Manager
Set the properties of your model highlight and standalone sliced model using the Model Slice
Manager.

Click the toggle mode button to switch between model edit mode and model highlight mode.

If automatic highlighting is disabled in the slice settings, refresh the model highlight using the

refresh button . Refresh the highlight after changing the slice configuration.

Model Slicer Options
You can customize the slice behavior using the options dialog box, which is accessed with the options

button .

Storage Options
Changes you make to a model slice configuration are saved automatically. You can store the slice
configuration in the model SLX file, or in an external SLMS file. Saving the configuration externally
can be useful if your SLX file is restricted by a change control system.

To set the storage location, click the options button in the Model Slice Manager and set the
location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file

Store in external file
Saves the model slice configuration in a separate SLMS file you specify by clicking the Save As
button. The model slice configuration filename is shown in File.

8 Model Slicer

8-40

Refresh Highlighting Automatically
Enables automatic refresh of a model highlight after changing the slice configuration.

Settings

on (default)
Model highlighting refreshes automatically.

off

Model highlighting must be refreshed manually. Click the refresh button in the Model Slice
Manager to refresh the highlight.

Sliced Model Options
You can control what items are retained when you create a sliced model from a model highlight using
the options in the Sliced model options pane.

Option On (selected) Off (cleared)
Retain signal
observers

Signal observers, such as scopes,
displays, and test condition
blocks, are retained in the sliced
model.

Signal observers are not retained in the
sliced model (default).

Retain root-level
inports and
outports

Root-level ports are retained in
the sliced model (default).

Root-level ports are not retained in the
sliced model.

Expand trivial
subsystems

Trivial subsystems are expanded
in the sliced model and the
subsystem boundary is removed
(default).

Trivial subsystems are not expanded in the
sliced model and the subsystem boundary
is retained. See“Trivial Subsystems” on
page 8-41.

Trivial Subsystems
If a subsystem has all of these characteristics, Model Slicer considers the subsystem trivial:

• If the subsystem is virtual, it contains three or fewer nonvirtual blocks.
• If the subsystem is atomic, it contains one or fewer nonvirtual blocks.
• The subsystem has two or fewer inports.
• The subsystem has two or fewer outports.
• The active inport or outport blocks of the subsystem have default block parameters.
• The system does not contain Goto Tag Visibility blocks.
• In the Block Properties dialog box, the subsystem Priority is empty.
• The data type override parameter (if applicable) is set to use local settings.

Note If you generate a sliced model which does not remove contents of a particular subsystem, the
subsystem remains intact in the sliced model.

 Configure Model Highlight and Sliced Models

8-41

Inline Content Options
When you create a sliced model from a highlight, model items can be inlined into the sliced model.
The Inline content options pane controls which model components are inlined in generating a
sliced model.

Model Component Inlining on (selected) Inlining off (cleared)
Libraries Model items inside sliced

libraries are inlined in the sliced
model and the library link is
removed. (default)

Model items inside sliced libraries are not
inlined in the sliced model and library link
remains in place.

Masked
subsystems

Model items inside sliced
masked subsystems are inlined
in the sliced model. (default)

The mask is retained in the
sliced model.

Model items inside sliced masked subsystems
are not inlined in the sliced model and the
mask is retained.

Model blocks Model items are inlined to the
sliced model from the model
referenced by the Model block.
The Model block is removed.
(default)

Note Model Slicer cannot inline
model blocks that are not in
Normal mode.

Model items are not inlined to the sliced
model from the model referenced by the
Model block. The Model block is retained.

Variants Model items are inlined to the
sliced model from the active
variant. Variants are removed.
(default)

Model items are not inlined to the sliced
model from the variant. The variant is
retained.

See Also

Related Examples
• “Highlight Functional Dependencies” on page 8-2
• “Refine Highlighted Model” on page 8-12
• “Simplify a Standalone Model by Inlining Content” on page 8-36

8 Model Slicer

8-42

Model Slicer Considerations and Limitations
When you work with the Model Slicer, consider these behaviors and limitations:

In this section...
“Model Compilation” on page 8-43
“Model Highlighting and Model Editing” on page 8-43
“Standalone Sliced Model Generation” on page 8-43
“Sliced Model Considerations” on page 8-43
“Port Attribute Considerations” on page 8-44
“Simulation Time Window Considerations” on page 8-45
“Simulation-based Sliced Model Simplifications” on page 8-45
“Starting Points Not Supported” on page 8-46
“Model Slicer Support Limitations for Simulink Software Features” on page 8-46
“Model Slicer Support Limitations for Simulation Stepper” on page 8-46
“Model Slicer Support Limitations for Simulink Blocks” on page 8-46
“Model Slicer Support Limitations for Stateflow” on page 8-47

Model Compilation
When you open Model Slice Manager, the model is compiled. To avoid a compilation error, before you
open Model Slice Manager, make sure that the model is compilable.

Model Highlighting and Model Editing
When a slice highlight is active, you cannot edit the model. You can switch to model edit mode and
preserve the highlights. When you switch back to slice mode, the slice configuration is recomputed
and the highlight is updated.

Standalone Sliced Model Generation
Sliced model generation requires one or more starting points for highlighting your model. Sliced
model generation is not supported for:

• Forward-propagating (including bidirectional) dependencies
• Constraints
• Exclusion points present in active highlight

Sliced model generation requires a writable working folder in MATLAB.

Sliced Model Considerations
When you generate a sliced model from a model highlight, simplifying your model can change
simulation behavior or prevent the sliced model from compiling. For example:

 Model Slicer Considerations and Limitations

8-43

• Model simplification can change the sorted execution order in a sliced model compared to the
original model, which can affect the sliced model simulation behavior.

• If you generate a sliced model containing a bus, but not the source signal of that bus, the sliced
model can contain unresolved bus elements.

• If you generate a sliced model that inlines a subset of the contents of a masked block, make sure
that the subsystem contents resolve to the mask parameters. If the contents and mask do not
resolve, it is possible that the sliced model does not compile.

• If the source model uses a bus signal, ensure that the sliced model signals are initialized correctly.
Before you create the sliced model, consider including an explicit copy of the bus signal in the
source model. For example, you can include a Signal Conversion block with the Output option set
to Signal Copy.

• For solver step sizes set to auto, Simulink calculates the maximum time step in part based on the
blocks in the model. If the sliced model removes blocks that affect the time step determination,
the time step of the sliced model can differ from the source model. The time step difference can
cause simulation differences. Consider setting step sizes explicitly to the same values calculated in
the source model.

Port Attribute Considerations
You can use blocks that the Model Slicer removes during model simplification to determine compiled
attributes, such as inherited sample times, signal dimensions, and data types. The Model Slicer can
change sliced model port attributes during model simplification to resolve underspecified model port
attributes. If the Model Slicer cannot resolve these inconsistencies, you can resolve some model port
attribute inconsistencies by:

• Explicitly specifying attributes in the source model instead of relying on propagation rules.
• Including in the sliced model the blocks that are responsible for the attribute propagation in your

source model. Before you slice the model, add these blocks as additional starting points in the
source model highlighting.

• Not inlining the model blocks that are responsible for model port attributes into the sliced model.
For more information on model items that you can inline into the sliced model, see “Inline Content
Options” on page 8-42.

Because of the way Simulink handles model references, you cannot simultaneously compile two
models that both contain a model reference to the same model. When you generate a sliced model,
the Model Slicer enters the Slicer Locked (for attribute checking) mode if these conditions are
true:

• The parent model contains a referenced model.
• The highlighted portion of the parent model contains the referenced model.
• The referenced model is not inlined in the sliced model due to one of the following

• You choose not to inline model blocks in the Inline content options pane of the Model Slicer
options.

• The Model Slicer cannot inline the referenced model. For more information on model items
that Model Slicer cannot inline, see “Inline Content Options” on page 8-42.

To continue refining the highlighted portion of the parent model, you must first activate the slice

highlight mode .

8 Model Slicer

8-44

Simulation Time Window Considerations
Depending on the step size of your model and the values that you enter for the start time and stop
time of the simulation time window, Model Slicer might alter the actual simulation start time and stop
time.

• If you enter a stop or start time that falls between time steps for your model solver, the Model
Slicer instead uses a stop or start time that matches the time step previous to the value that you
entered. For more information on step sizes in Simulink, see “Compare Solvers”.

• The stop time for the simulation time window cannot be greater than the total simulation time.

Simulation-based Sliced Model Simplifications
When you slice a model by using a simulation time window, some blocks in the source model, such as
switch blocks, logical operator blocks, and others, can be replaced when creating the simplified
standalone model. For example, a switch block that always passes one input is removed, and the
active input is directly connected to the output destination. The unused input signal is also removed
from the standalone model.

This table describes the blocks that the Model Slicer can replace during model simplification.

Block in Source Model Simplification
Switch

Multiport Switch

If only one input port is active, the switch is
replaced by a signal connecting the active input
to the block output.

Enabled Subsystem or Model If the subsystem or model is always enabled,
remove the control input and convert to a
standard subsystem or model.

If the subsystem is never enabled, replace the
subsystem with a constant value defined by the
initial condition.

Triggered Subsystem or Model If the subsystem or model is always triggered,
remove the trigger input and convert to a
standard subsystem or model.

If the subsystem is never triggered, replace the
subsystem with a constant value defined by the
initial condition.

Enabled and Triggered Subsystem or Model If the subsystem is always executed, convert to a
standard subsystem or model

If the subsystem is never executed, replace the
subsystem with a constant value defined by the
initial condition.

Merge If only one input port is active, the merge is
replaced by a signal connecting the active input
to the block output.

 Model Slicer Considerations and Limitations

8-45

Block in Source Model Simplification
If

If Action

If only one action subsystem is active, convert to
a standard subsystem or model and remove the If
block.

Switch Case

Switch Case Action

If only one action subsystem is active, convert to
a standard subsystem or model and remove the
Switch Case block.

Logical operator Replace with constant when the block always
outputs true or always outputs false.

Replace the input signal with a constant if the
input signal is always true or always false.

Starting Points Not Supported
The Model Slicer does not support these model items as starting points:

• Virtual blocks, other than subsystem Inport and Outport blocks
• Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software Features
The Model Slicer does not support these features:

• Analysis of Simulink Test test harnesses
• Models that contain Simscape physical modeling blocks
• Models that contain algebraic loops
• Loading initial states from the source model for sliced model generation, such as data import/

export entries. Define initial states explicitly for the sliced model in the sliced model configuration
parameters.

• Component slicing of the subsystems and referenced models that have multiple rates.
• Component based slice generation of Function call triggered subsystems and model blocks.

Model Slicer Support Limitations for Simulation Stepper
When using Model Slicer with Simulation Stepper, the slice highlight after a Step Back may not be
limited to a single step. The highlight can be influenced by the Simulation Stepping Options >
Interval between stored back steps. For more information, see “Interval between stored back
steps”.

Model Slicer Support Limitations for Simulink Blocks
The table lists the Model Slicer support limitations for Simulink Blocks.

8 Model Slicer

8-46

Block Limitation
For Each Subsystem block The simulation impact is ignored for blocks in a For Each

subsystem. Therefore, applying a simulation time window returns
the same dependency analysis result as a dependency analysis that
does not use a simulation time window.

Function Caller block Model Slicer does not support Function Caller blocks.
MATLAB Function block Model Slicer assumes that any output depends on all inputs in the

upstream direction and any input affects all outputs in the
downstream direction.

Merge block If you generate a slice by using a simulation time window, Merge
blocks are removed in the standalone model if only a single path is
exercised.

Model block Model Slicer does not resolve data dependencies generated by
global data store memory in Model blocks with Simulation mode
set to Accelerator.

Model Slicer does not support function-call root-level Inport
blocks. For more information, see Export-Function Models.

Model Slicer does not analyze the contents within a reference to a
“Reference Protected Models from Third Parties”. When you slice a
model that contains a protected model reference, the Model Slicer
includes the entire model reference in the sliced model.

Resettable Subsystem block Model Slicer does not support Resettable Subsystem blocks.
S-function block Model Slicer assumes that any output depends on all inputs in the

upstream direction and any input affects all outputs in the
downstream direction.

Model Slicer does not determine dependencies that result from an
S-function block accessing model information dependent on a
simulation time window.

Model Slicer Support Limitations for Stateflow
• When you highlight models containing a Stateflow chart or state transition table, Model Slicer

assumes that any output from the Chart block or State Transition Table block depends on all
inputs to the Chart block or State Transition Table block.

• When you slice a model with a Stateflow chart or a state transition table, Model Slicer does not
simplify the chart or table. The chart or table is included in its entirety in the sliced model.

• If you do not “Define a Simulation Time Window” on page 8-12 when you highlight functional
dependencies in a Stateflow chart or state transition table, Model Slicer assumes that all elements
of the chart or table are active. Model Slicer highlights the entire contents of such charts and
tables.

• When you highlight functional dependencies in a Stateflow chart or state transition table for a
defined simulation time window, Model Slicer does not highlight only the states and transitions
that affect the selected starting point. Instead, the Model Slicer highlights elements that are
active in the time window that you specify.

 Model Slicer Considerations and Limitations

8-47

• The Model Slicer does not determine dependencies between Stateflow graphical functions and
function calls in other Stateflow charts.

• Graphical functions and their contents that were not active during the selected time window can
potentially remain highlighted in some cases.

• Entry into states that are preempted due to events can potentially remain highlighted in some
cases. For example, after a parent state is entered, an event action can exit the state and preempt
entry into the child state. In such a case, the Model Slicer highlights the entry into the child state.

• The Model Slicer does not support:

• MATLAB Function blocks
• Simulink functions
• Truth Table blocks
• Machine-parented data or events in Stateflow.

.

Activity-Based Time Slicing Considerations for Stateflow

As measured by the 'Executed Substate' decision coverage, state activity refers to these during/exit
actions:

• Entry into a state does not constitute activity.
• The active time interval for a state or transition includes the moment in which the selected state

exits and the subsequent state is entered.
• Indirect exits from a state or transition do not constitute activity. For example, if a state C exits

because its parent state P exits, state C is not considered active.

For more information on decision coverage for Stateflow charts, see “Decision Coverage for Stateflow
Charts” (Simulink Coverage).

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 8-29, you
can select states and transitions only as activity constraints. You cannot select these Stateflow objects
as constraints:

• Parallel states
• Transitions without conditions, such as unlabeled transitions which do not receive decision

coverage
• States or transitions within library-linked charts
• XOR states without siblings. For example, if a state P has only one child state C, you cannot select

state C as an activity constraints because state P does not receive decision coverage for the
executed substate

See Also
“Algebraic Loop Concepts” | “Solver Pane”

8 Model Slicer

8-48

Using Model Slicer with Stateflow

In this section...
“Model Slicer Highlighting Behavior for Stateflow Elements” on page 8-49
“Using Model Slicer with Stateflow State Transition Tables” on page 8-49
“Support Limitations for Using Model Slicer with Stateflow” on page 8-49

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts or tables.
After you “Define a Simulation Time Window” on page 8-12, you use Model Slicer to highlight and
slice Stateflow elements that are active within the selected time window.

Note If you do not “Define a Simulation Time Window” on page 8-12 when you highlight functional
dependencies in a Stateflow chart or table, Model Slicer assumes that all elements of the chart or
table are active. Model Slicer highlights the entire contents of such charts and tables.

In this section...
“Model Slicer Highlighting Behavior for Stateflow Elements” on page 8-49
“Using Model Slicer with Stateflow State Transition Tables” on page 8-49
“Support Limitations for Using Model Slicer with Stateflow” on page 8-49

Model Slicer Highlighting Behavior for Stateflow Elements
Model Slicer highlights a Stateflow element if it was executed in the specified time window. Some
examples include:

• A chart, if it is activated in the specified a time window.
• A state, if its entry, exit, or during actions are executed in the specified a time window.
• A parent state, if its child state is highlighted in the specified a time window.
• A transition, if it is taken in the specified time window, such as inner, outer, and default. If the

conditions of a transition are evaluated, but the transition is not taken, Model Slicer does not
highlight the transition.

Using Model Slicer with Stateflow State Transition Tables
Model Slicer does not directly highlight the contents of Stateflow state transition tables. To view
highlighted functional dependencies in a state transition table, you must view the auto-generated
diagram for the state transition table. For instructions on how to view the auto-generated diagram for
the state transition table, see “Generate Diagrams from State Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow
For support limitations when you use Model Slicer with Stateflow, see “Model Slicer Support
Limitations for Stateflow” on page 8-47.

 Using Model Slicer with Stateflow

8-49

See Also

More About
• “Highlight Functional Dependencies” on page 8-2
• “Refine Highlighted Model” on page 8-12
• “Chart Simulation Semantics” (Stateflow)

8 Model Slicer

8-50

Isolating Dependencies of an Actuator Subsystem
This example demonstrates highlighting model items that a subsystem depends on. It also
demonstrates generating a standalone model slice from the model highlight.

In this section...
“Choose Starting Points and Direction” on page 8-51
“View Precedents and Generate Model Slice” on page 8-52

Choose Starting Points and Direction
1 Open the f14 example model.

f14
2 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

3 In the Model Slice Manager, click the arrow to expand the Slice configuration list list. Set the
slice properties:

• Name: Actuator_slice
•

To the right of Name, click the colored square to set the highlight color. Choose magenta
from the palette.

• Signal Propagation: upstream.

 Isolating Dependencies of an Actuator Subsystem

8-51

4 Add the Actuator Model subsystem as a starting point. In the model, right-click the Actuator
Model subsystem and select Model Slicer > Add as Starting Point.

View Precedents and Generate Model Slice
1 The model highlights the upstream dependencies of the Actuator Model subsystem.

8 Model Slicer

8-52

Trace the following dependency path. Aircraft Dynamics Model is highlighted via the Pitch
Rate q signal, which is an input to Controller, the output of which feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.
b In the Select File to Write dialog box, select the save location and enter

actuator_slice_model.
c Click Save.

3 The sliced model contains the highlighted model items.

 Isolating Dependencies of an Actuator Subsystem

8-53

4 To remove highlighting from the model, close the Model Slice Manager.

8 Model Slicer

8-54

Isolate Model Components for Functional Testing
You can create a standalone model for the model designed using “Design Model Architecture”. The
model slice isolates the model components and relevant signals for debugging and refinement.

Isolate Subsystems for Functional Testing
To debug and refine a subsystem of your model, create a standalone model. The standalone model
isolates the subsystem and relevant signals. You can observe the subsystem behavior without
simulating the entire source model.

Note You cannot slice virtual subsystems. To isolate a virtual subsystem, first convert it to an atomic
subsystem.

Isolate a Subsystem with Simulation-Based Inputs

To observe the simulation behavior of a subsystem, include logged signal inputs in the standalone
model. When you configure the model slice, specify a simulation time window. For large models,
observing subsystem behavior in a separate model can save time compared to compiling and running
the entire source model.

This example shows how to include simulation effects for the Controller subsystem of a cruise control
system.

1 To open the Model Slice Manager, on the Apps tab, under Model Verification, Validation, and
Test gallery, click Model Slicer.

 Isolate Model Components for Functional Testing

8-55

2 To select the starting point for dependency analysis, right-click a block, signal, or a port, and
select Model Slicer > Add as Starting point.

3 To isolate the subsystem in the sliced model, right-click the subsystem, and select Model Slicer
> Slice component.

In the example model, selecting Slice component for the Controller subsystem limits the
dependency analysis to the path between the starting point (the throttle outport) and the
Controller subsystem.

4 To specify the simulation time window:

a In the Model Slice Manager, select Simulation time window.
b

Click the run simulation button .
c Enter the simulation stop time, and click OK.

8 Model Slicer

8-56

The Model slicer analyzes the model dependencies for the simulation interval.
5 To extract the subsystem and logged signals, click Generate slice. Enter a file name for the

sliced model.

Based on the dependency analysis, a Signal Builder block supplies the signal inputs to the
subsystem.

In the sliced model shown, the sliced model Signal Builder block contains one test case
representing the signal inputs to the Controller subsystem for simulation time 0–45 seconds.

Isolate Referenced Model for Functional Testing
To functionally test a referenced model, you can create a slice of a referenced model treating it as an
open-loop model. You can isolate the simplified open-loop referenced model with the inputs generated
by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel control
system for functional testing. To create a simplified open-loop referenced model for debugging and
refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel_rate_control.

open_system('sldvSlicerdemo_fuelsys');

 Isolate Model Components for Functional Testing

8-57

Step 2: Slice the Referenced Model

To analyze the fuel_rate_control referenced model, you slice it to create a standalone open-loop
model. To open the Model Slice Manager, select Apps > Model Verification, Validation, and Test
> Model Slicer, or right-click the fuel_rate_control model and select Model Slicer > Slice
component. When you open the Model Slice Manager, the Model Slicer compiles the model. You then
configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo_fuelsys model is Accelerator mode. When
you slice the referenced model, the software configures the simulation mode to Normal mode and
sets it back to its original simulation mode while exiting the Model Slicer.

Step 3: Select Starting Point

Open the fuel_rate_control model, right-click the fuel-rate port, and select Model Slicer >
Add as starting point. The Model Slicer highlights the upstream constructs that affect the
fuel_rate.

8 Model Slicer

8-58

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.

b. Click Run simulation.

c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the inputs of
the close-loop sldvSlicerdemo_fuelsys model.

 Isolate Model Components for Functional Testing

8-59

For the sliced model, in the Signal Builder window, one test case is displayed that represents the
signals input to the referenced model for simulation time 0–20 seconds.

8 Model Slicer

8-60

 Isolate Model Components for Functional Testing

8-61

See Also
“Model Slicer Considerations and Limitations” on page 8-43 | “Highlight Functional Dependencies”
on page 8-2

8 Model Slicer

8-62

Refine Highlighted Model by Using Existing .slslicex or Dead
Logic Results

When you run simulation or refine dead logic, Model Slicer saves your simulation results at the
default location <current_folder>\modelslicer\<model_name>\<model_name>.slslicex.
For large or complex models, the simulation time can be lengthy. To refine the highlighted slice, you
can use the existing Model Slicer simulation data or dead logic results.

If you want to highlight functional dependencies in the model again at another time, you can use the
existing.slslicex simulation time window data without needing to resimulate the model. Model
Slicer then uses the existing simulation data to highlight the model.

1 Open the Simulink model.
2 To open the Model Slice Manager, On the Apps tab, under Model Verification, Validation, and

Test gallery, click Model Slicer.
3 Select Simulation time window.
4

Click Use existing simulation data .
5 Navigate to the existing .slslicex data and click Open.

To refine the dead logic for dependency analysis, you can import the existing Simulink Design Verifier
data file or use the existing .slslicex dead logic results. For more information see, “Dead Logic
Detection” (Simulink Design Verifier) and “Simulink Design Verifier Data Files” (Simulink Design
Verifier).

1 In Model Slice Manager, select Refine Dead Logic and click Get Dead Logic Data.
2

To import the Simulink Design Verifier data file, click Browse for SLDV data file .

To load the existing dead logic results, click Browse for existing dead logic results .
3 Navigate to the existing data and click Open.

 Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results

8-63

See Also

More About
• “Highlight Functional Dependencies” on page 8-2
• “Configure Model Highlight and Sliced Models” on page 8-40
• “Refine Dead Logic for Dependency Analysis” on page 8-22

8 Model Slicer

8-64

Simplification of Variant Systems
In this section...
“Use the Variant Reducer to Simplify Variant Systems” on page 8-65
“Use Model Slicer to Simplify Variant Systems” on page 8-65

If your model contains “Variant Systems”, you can reduce the model to a simplified, standalone model
containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems
After you Add and Validate Variant Configurations, you can reduce the model from the Variant
Manager:

1 Open a model containing at least one valid variant configuration.
2 Right-click a variant system and select Variant >> Open in Variant Manager.
3 Click Reduce model....
4 Select one or more variant configurations.
5 Set the Output directory.
6 Click Reduce to create a simplified, standalone model containing only the selected variant

configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you specified
containing only the variant configurations you selected. For more information, see “Reduce Models
Containing Variant Blocks”.

Use Model Slicer to Simplify Variant Systems
After you Add and Validate Variant Configurations, you can use Model Slicer to create a simplified,
standalone model containing only the active variant configuration. When you “Highlight Functional
Dependencies” on page 8-2 in a model containing variant systems, only active variant choices are
highlighted. When you “Create a Simplified Standalone Model” on page 8-28 from a model highlight
that includes variant systems, Model Slicer removes the variant systems and replaces them with the
active variant configurations.

For instructions on how to change the active variant configuration and how to set default variant
choices, see “Working with Variant Choices”.

See Also

More About
• “Create a Simple Variant Model”
• “Define, Configure, and Activate Variant Choices in a Variant Subsystem Block”
• “Introduction to Variant Controls”
• “Reduce Models Containing Variant Blocks”

 Simplification of Variant Systems

8-65

Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer

In this example, you evaluate a Simulink® model, detect unexpected behavior, and use Model Slicer
to programmatically isolate and resolve the unexpected behavior. When you plan to reuse your API
commands and extend their use to other models, a programmatic approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the Model Slicer
API. “Highlight Functional Dependencies” on page 8-2 outlines how to use Model Slicer user
interface to explore models. The slslicer, slsliceroptions, and slslicertrace function
reference pages contain the Model Slicer API command help.

Find the Area of the Model Responsible for Unexpected Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller subsystem
sldvSliceCruiseControl and a block, TestCases, containing a test case for this subsystem. You first
simulate the model to execute the test case. You then evaluate the behavior of the model to find and
isolate areas of the model responsible for unexpected behavior:

1. Open the sldvSliceCruiseControlHarness test harness for the cruise control model.

open_system('sldvSliceCruiseControlHarness')

8 Model Slicer

8-66

Note: The Assertion block is set to Stop simulation when assertion fails when the actual
operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.

2. In the TestCases Signal Builder click the Run all button to run all of the included test cases. You
receive an error during the ResumeWO test case. The Assertion block halted simulation at 27
seconds, because the actual operation mode was not the same as the expected operation mode. Click
OK to close this error message.

3. In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear Enable
assertion, and click OK.

set_param('sldvSliceCruiseControlHarness/Assertion','Enabled','off')

4. Set the Active Group of the TestCases Signal Builder block to the test case containing the error
and run the simulation again.

signalbuilder('sldvSliceCruiseControlHarness/TestCases', 'ACTIVEGROUP', 12)
sim('sldvSliceCruiseControlHarness')

The Scope block in the model contains three signals:

• operation_mode - displays the actual operation mode of the subsystem.
• expected_mode - displays the expected operation mode of the subsystem that the test case

provides.
• verify - displays a Boolean value comparing the operation mode and the expected mode.

The scope shows a disparity between the expected operation mode and the actual operation mode
beginning at time 27. Now that you know the outport displaying the unexpected behavior and the
time window containing the unexpected behavior, use Model Slicer to isolate and analyze the
unexpected behavior.

Isolate the Area of the Model Responsible for Unexpected Behavior

1. Create a Model Slicer configuration object for the model using slslicer. The Command Window
displays the slice properties for this Model Slicer configuration.

obj = slslicer('sldvSliceCruiseControlHarness')

obj =

 SLSlicer with properties:

 Configuration: [1x1 SLSlicerAPI.SLSlicerConfig]
 ActiveConfig: 1
 DisplayedConfig: []
 StorageOptions: [1x1 struct]
 AnalysisOptions: [1x1 struct]
 SliceOptions: [1x1 struct]
 InlineOptions: [1x1 struct]

 Contents of active configuration:
 Name: 'untitled'
 Description: ''

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

8-67

 Color: [0 1 1]
 SignalPropagation: 'upstream'
 StartingPoint: [1x0 struct]
 ExclusionPoint: [1x0 struct]
 Constraint: [1x0 struct]
 SliceComponent: [1x0 struct]
 UseTimeWindow: 0
 CoverageFile: ''
 UseDeadLogic: 0
 DeadLogicFile: ''

2. Activate the slice highlighting mode of Model Slicer to compile the model and prepare it for
dependency analysis.

activate(obj)

Consider turning on Fast Restart before launching Model Slicer for simulation based workflows. Do not show again.

3. Add the operation_mode outport block as a starting point and highlight it.

addStartingPoint(obj,'sldvSliceCruiseControlHarness/operation_mode')
highlight(obj)

The area of the model upstream of the starting point and active during simulation is highlighted.

4. Simulate the model within a restricted simulation time window (maximum 30 seconds) to highlight
only the area of the model upstream of the starting point and active during the time window of
interest.

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the simulation time
window is highlighted.

5. You can further narrow the simulation time window by changing the start time to 20 seconds.

setTimeWindow(obj,20,30)

6. Create a sliced model sldvSliceCruiseControlHarness_sliced containing only the area of
interest.

slicedModel = slice(obj,'sldvSliceCruiseControlHarness_sliced')
open_system('sldvSliceCruiseControlHarness_sliced')

slicedModel =

 'sldvSliceCruiseControlHarness_sliced'

8 Model Slicer

8-68

The sliced model sldvSliceCruiseControlHarness_sliced now contains a simplified version of the
source model sldvSliceCruiseControlHarness. The simplified standalone model contains only those
parts of the model that are upstream of the specified starting point and active during the time
window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then apply
changes to the source model.

1. To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)

2. Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness_sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled')

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

8-69

The AND Logical Operator block in this subsystem has a truncated true constant attached to its
second input port. This true constant indicates that the second input port is always true during the
restricted time window for this sliced model, causing the cruise control system not to enter the "has
canceled" state.

3. Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

h = slslicertrace('SOURCE',...
 'sldvSliceCruiseControlHarness_sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp1')
hilite_system(h)

h =

 1.2150e+03

8 Model Slicer

8-70

The OR Logical Operator block in this subsystem is always true in the current configuration.
Changing the OR Logical Operator block to an AND Logical Operator block rectifies this error.

4. Before making edits, create new copies of the cruise control model and the test harness model.

save_system('sldvSliceCruiseControl','sldvSliceCruiseControl_fixed')
save_system('sldvSliceCruiseControlHarness','sldvSliceCruiseControlHarness_fixed')

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

8-71

8 Model Slicer

8-72

5. Update the model reference in the test harness to refer to the newly saved model.

set_param('sldvSliceCruiseControlHarness_fixed/Model',...
 'ModelNameDialog','sldvSliceCruiseControl_fixed.slx')

6. Use the block path of the erroneous Logical Operator block to fix the error.

set_param('sldvSliceCruiseControl_fixed/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp2','LogicOp','AND')

7. Simulate the test harness for 45 seconds with the fixed model to confirm the corrected behavior.

sim('sldvSliceCruiseControlHarness_fixed')

The scope now shows that the expected operation mode is the same as the actual operation mode.

Clean Up

To complete the demo, save and close all models and remove the Model Slicer configuration object.

save_system('sldvSliceCruiseControl_fixed')
save_system('sldvSliceCruiseControlHarness_fixed')
close_system('sldvSliceCruiseControl_fixed')
close_system('sldvSliceCruiseControlHarness_fixed')
close_system('sldvSliceCruiseControlHarness_sliced')
clear obj

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

8-73

Refine Highlighted Model Slice by Using Model Slicer Data
Inspector

Using the Model Slicer Data Inspector, you can inspect logged signals and refine the highlighted
model slice. To refine the highlighted model slice, select the time window in the graphical plot by
using data cursors.

In the Model Slicer Data Inspector, you can:

• View signals — Inspect logged signal data after model simulation. See “Inspect Simulation Data”.
• Select simulation time window — Define simulation time window by using data cursors in the

graphical plot or by defining the Start and Stop time in the Inspector.
• Highlight — Compute a slice for the defined simulation time window. See “Highlight Functional

Dependencies” on page 8-2.

Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector
This example shows how to investigate and refine the highlighted model slice by using the Model
Slicer Data Inspector.

In the fault-tolerant fuel control system, the control_logic controls the fueling mode of the engine.
In this example, you slice the fuel_rate_control referenced model. Then, investigate the effect of
fuel_rate_ratio on the Fueling_mode of the engine. For more information, see “Modeling a
Fault-Tolerant Fuel Control System”.

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel_rate_control model, and select Apps > Model
Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo_fuelsys');

8 Model Slicer

8-74

To select the starting point, open the fuel_rate_control model, and add the fuel-rate port and
the fuel_mode output signal as the starting point. To add a port or a signal as a starting point, right-
click the port or signal, and select Model Slicer > Add as Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

d. Click OK.

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

8-75

8 Model Slicer

8-76

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

8-77

The logged input and output signals appear in the Model Slicer Data Inspector. When you open the
Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data Inspector session as
MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by specifying
the Start and Stop time in the navigation pane. To highlight the model for the defined simulation
time window, Click Highlight.

8 Model Slicer

8-78

To investigate the Fueling_mode, open the control_logic Stateflow™ chart, available in the
fuel_rate_control referenced model. Select the time window for 13–15 seconds and click
Highlight. For the defined simulation time window, the Low_Emissions fueling mode is active and
highlighted.

Select the data cursor for the time window 6–7.5 seconds, with 0 fuel_cal:1. Click Highlight. In
the control_logic model, the Fuel_Disabled state is highlighted. The engine is in Shutdown
mode.

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

8-79

See Also
“Highlight Functional Dependencies” on page 8-2 | “Refine Highlighted Model” on page 8-12

8 Model Slicer

8-80

Debug Slice Simulation by Using Fast Restart Mode
Perform multiple slicer simulations and streamline model debugging workflows by using Model Slicer
in fast restart mode. For more information, see “Get Started with Fast Restart”.

If you enable fast restart mode, you can:

• Perform multiple slicer simulations efficiently with different inputs, without recompiling the
model.

• Debug a simulation by stepping through the major time steps of a simulation and inspecting how a
slice changes. For more information, see “Use Simulation Stepper”.

Simulate and Debug a Test Case in a Model Slice
This example shows how the fast restart mode performs slicer simulations with different test case
inputs, without recompiling the model. You can simulate a sliced harness model with a test case input
and highlight the dependency analysis in the model.

Analyze the highlighted slice by stepping through the time steps. You use the simulation stepper to
analyze how the slice changes at each time step.

1 Open the sldvdemo_cruise_control model.

open_system('sldvdemo_cruise_control');
2 Set sldvoptions parameters and analyze the model by using the specified options.

opts = sldvoptions;
opts.Mode = 'TestGeneration'; % Perform test-generation analysis
opts.ModelCoverageObjectives = 'MCDC'; % Specify type of model coverage
opts.SaveHarnessModel = 'on'; % Save harness as model file
[status, files] = sldvrun('sldvdemo_cruise_control', opts);

After the analysis, the software opens a harness model sldvdemo_cruise_control_harness
and saves it in the default location <current_folder>\sldv_output
\sldvdemo_cruise_control\sldvdemo_cruise_control_harness.slx. For more
information, see “Simulink Design Verifier Harness Models” (Simulink Design Verifier).

 Debug Slice Simulation by Using Fast Restart Mode

8-81

3

To enable the fast restart mode, click Enable Fast Restart button .
4 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

Model Slicer compiles the model.

Optionally, you can enable fast restart after opening the Model Slice Manager. Select Simulation

time window and click the run simulation button . To enable fast restart, in the Record
simulation time window, click the here link.

5 To add Starting Points, in the Model Slice Manager, click Add all outports..

8 Model Slicer

8-82

The throt and target outports are added as the Starting Points.
6 You can simulate a test case and analyze the highlighted dependencies in the slice.

a In the Signal Builder block, select Test Case 4.
b

To simulate the test case, click Start simulation button, .

Optionally, you can simulate the model by using the Run button in the Simulink editor.
You can also simulate by using the Simulation time window in the Model Slice Manager.

The slice shows the highlighted dependencies for the Test Case 4 inputs.

 Debug Slice Simulation by Using Fast Restart Mode

8-83

8 Model Slicer

8-84

You can simulate a slice for different test case inputs and analyze the dependency analysis.
7 Debug a slicer simulation by using a simulation stepper. For more information see, “Simulation

Stepper Access”.

 Debug Slice Simulation by Using Fast Restart Mode

8-85

a To debug the simulation for the test case, in the Simulink Editor for the
sldvdemo_cruise_control_harness model, click Step Forward button. You can view
the signal values and the highlighted slice at each time step. For more information, see
“Simulation Stepping Options”. The signal values and the dependencies at T=0.010 appears.

b To debug the slice at T=0.030, step forward and view the signal values and the highlighted
slice.

8 Model Slicer

8-86

8 To complete the simulation stepping, click the Run button.

See Also

More About
• “Highlight Functional Dependencies” on page 8-2
• “Simulation Stepper”
• “Get Started with Fast Restart”

 Debug Slice Simulation by Using Fast Restart Mode

8-87

Isolate Referenced Model for Functional Testing
To functionally test a referenced model, you can create a slice of a referenced model treating it as an
open-loop model. You can isolate the simplified open-loop referenced model with the inputs generated
by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel control
system for functional testing. To create a simplified open-loop referenced model for debugging and
refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel_rate_control.

open_system('sldvSlicerdemo_fuelsys');

Step 2: Slice the Referenced Model

To analyze the fuel_rate_control referenced model, you slice it to create a standalone open-loop
model. To open the Model Slice Manager, select Apps > Model Verification, Validation, and Test
> Model Slicer, or right-click the fuel_rate_control model and select Model Slicer > Slice
component. When you open the Model Slice Manager, the Model Slicer compiles the model. You then
configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo_fuelsys model is Accelerator mode. When
you slice the referenced model, the software configures the simulation mode to Normal mode and
sets it back to its original simulation mode while exiting the Model Slicer.

8 Model Slicer

8-88

Step 3: Select Starting Point

Open the fuel_rate_control model, right-click the fuel-rate port, and select Model Slicer >
Add as starting point. The Model Slicer highlights the upstream constructs that affect the
fuel_rate.

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.

b. Click Run simulation.

c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the inputs of
the close-loop sldvSlicerdemo_fuelsys model.

 Isolate Referenced Model for Functional Testing

8-89

For the sliced model, in the Signal Builder window, one test case is displayed that represents the
signals input to the referenced model for simulation time 0–20 seconds.

8 Model Slicer

8-90

 Isolate Referenced Model for Functional Testing

8-91

Analyze the Dead Logic
This example shows how to refine the model for dead logic. The sldvSlicerdemo_dead_logic
model consists of dead logic paths that you refine for dependency analysis.

1. Open the sldvSlicerdemo_dead_logic model.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

open_system('sldvSlicerdemo_dead_logic');

Open the Controller subsystem and add the outport throt as the starting point.

8 Model Slicer

8-92

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.

3. Click Get Dead Logic Data.

 Analyze the Dead Logic

8-93

4. Specify the Analysis time and run the analysis. You can import existing dead logic results from the
sldvData file or load existing .slslicex data for analysis. For more information, see “Refine
Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63.

8 Model Slicer

8-94

 Analyze the Dead Logic

8-95

As the set input is equal to true, the False input to switch is removed for dependency analysis.
Similarly, the output of block OR is always true and removed from the model slice.

8 Model Slicer

8-96

Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector

This example shows how to investigate and refine the highlighted model slice by using the Model
Slicer Data Inspector.

In the fault-tolerant fuel control system, the control_logic controls the fueling mode of the engine.
In this example, you slice the fuel_rate_control referenced model. Then, investigate the effect of
fuel_rate_ratio on the Fueling_mode of the engine. For more information, see “Modeling a
Fault-Tolerant Fuel Control System”.

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel_rate_control model, and select Apps > Model
Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo_fuelsys');

To select the starting point, open the fuel_rate_control model, and add the fuel-rate port and
the fuel_mode output signal as the starting point. To add a port or a signal as a starting point, right-
click the port or signal, and select Model Slicer > Add as Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

8-97

d. Click OK.

8 Model Slicer

8-98

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

8-99

The logged input and output signals appear in the Model Slicer Data Inspector. When you open the
Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data Inspector session as
MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by specifying
the Start and Stop time in the navigation pane. To highlight the model for the defined simulation
time window, Click Highlight.

8 Model Slicer

8-100

To investigate the Fueling_mode, open the control_logic Stateflow™ chart, available in the
fuel_rate_control referenced model. Select the time window for 13–15 seconds and click
Highlight. For the defined simulation time window, the Low_Emissions fueling mode is active and
highlighted.

Select the data cursor for the time window 6–7.5 seconds, with 0 fuel_cal:1. Click Highlight. In
the control_logic model, the Fuel_Disabled state is highlighted. The engine is in Shutdown
mode.

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

8-101

8 Model Slicer

8-102

Programmatically Generate I/O Dependency Matrix
This example shows how to programmatically generate a dependency matrix that shows the
relationship between root level inports and outports.

To create the dependency matrix:

1. Open model slcheckSliceCruiseControl.

model='slcheckSliceCruiseControl';
open_system(model);

2. Create a SysDependencyTabulator object.

obj=SysDependencyTabulator(model);

3. Initialise a model handle.

sysH = get_param(model, 'handle');

4. Use tabulateDependencies method to create a dependency matrix for the model handle.

T1 = obj.tabulateDependencies(sysH)

T1=5×11 table
 enbl cncl set resume inc dec brakeP key gear throtDrv vehSp
 ____ ____ ___ ______ ___ ___ ______ ___ ____ ________ _____

 reqDrv 1 1 1 1 1 1 0 0 0 0 0
 status 1 1 1 1 1 1 1 1 1 0 1
 operation_mode 1 1 1 1 1 1 1 1 1 0 1
 targetSp 1 1 1 1 1 1 1 1 1 0 1
 throtCC 1 1 1 1 1 1 1 1 1 1 1

5. Initialise a subsystem handle.

subsystemPath = [model '/CruiseControlMode'];
sysH = get_param(subsystemPath, 'handle');

6. Use tabulateDependencies method to create a dependency matrix for the subsystem handle.

T2 = obj.tabulateDependencies(sysH)

T2=2×5 table
 reqDrv brakeP vehSp key gear
 ______ ______ _____ ___ ____

 status 1 1 1 1 1
 mode 1 1 1 1 1

7. Delete the SysDependencyTabulator object.

delete(obj);

8. Close the model.

close_system(model);

 Programmatically Generate I/O Dependency Matrix

8-103

8 Model Slicer

8-104

Observe Impact of Simulink Parameters Using Model Slicer
Use Model Slicer to observe the impact a parameter has on a model.

This example demonstrates the ability of Model Slicer to display the parameters that affect a block
(Option 1), and blocks that are affected by a parameter (Option 2) using the methods of the
SLSlicerAPI.ParameterDependence class parametersAffectingBlock, and
blocksAffectedByParameter repectively.

Open Model and Initialize ParameterDependence Class

1. Open the model sldvSliceCruiseControl.

model = 'sldvSliceCruiseControl';
open_system(model);

2. Create an object of the ParameterDependence Class.

slicerObj = slslicer(model);
pd = slicerObj.parameterDependence;

Option 1: Find Parameters Affecting a Block

1. View the parameters that affect the Switch3 block in the DriverSwRequest subsystem by
entering:

params = parametersAffectingBlock(pd, 'sldvSliceCruiseControl/DriverSwRequest/Switch3')

params=1×49 object
 1x49 VariableUsage array with properties:

 Name
 Source
 SourceType
 Users

You can see that there are 49 parameters that affect the Switch3 block. To view the details of
individual parameters, explore each element of the array:

params(1)

ans =
 VariableUsage with properties:

 Name: 'CountValue'
 Source: 'sldvSliceCruiseControl/DriverSwRequest/decrement/counter'
 SourceType: 'mask workspace'
 Users: {'sldvSliceCruiseControl/DriverSwRequest/decrement/counter/Constant'}

Option 2: Get Blocks Affected By a Parameter

1. To observe the impact of a parameter, create a Simulink.VariableUsage object for that
parameter.

param = Simulink.VariableUsage('CountValue','sldvSliceCruiseControl/DriverSwRequest/decrement/counter');

 Observe Impact of Simulink Parameters Using Model Slicer

8-105

2. To view all the blocks affected by param:

affectedBlocks = blocksAffectedByParameter(pd, param)

affectedBlocks = 1×153
103 ×

 0.0130 0.0280 0.0290 0.0720 0.0730 0.0740 0.0840 0.5110 0.5130 0.5140 0.5160 0.8280 0.8290 0.8300 0.8310 0.8570 0.8580 0.8590 0.8600 0.8610 0.8700 0.8790 0.8830 0.8970 0.9010 0.9140 0.9150 0.9160 0.9170 0.9180 0.9190 0.9510 0.9600 0.9710 0.9720 1.0030 1.0100 1.0110 1.0180 1.0190 1.0200 1.0400 1.0450 1.0460 1.0810 1.0880 1.0930 1.1080 1.1090 1.1100

You can further refine the blocks affected using the same options supported by find_system.

affectedOutports = blocksAffectedByParameter(pd, param, 'blockType', 'Outport')

affectedOutports = 1×5
103 ×

 1.8770 1.8760 1.8780 1.8790 1.8800

Optional Step: Highlight Result on Model by Using Model Slicer

You can view the active section of the analyzed model by using the Model Slicer highlighting.

slicerObj.highlight(slicerObj.ActiveConfig);

Clean Up

Model Slicer maintains the model in compiled state after analysis. To close the model, terminate the
slicerObj object.

slicerObj.terminate;

8 Model Slicer

8-106

	Get Started
	Simulink Check Product Description
	Assess and Verify Model Quality
	Detect and Fix Model Advisor Check Violations
	Detect and Fix Model Advisor Check Violations While You Edit
	Detect and Fix Model Advisor Check Violations Interactively

	Collect Model Metric Data by Using the Metrics Dashboard
	Analyze Metric Data
	Explore Metric Data
	Refactor Model Based on Metric Data

	Detect and Fix Compliance Issues
	Explore Compliance Results in the Dashboard
	Update Model to Fix Compliance Issues
	Rerun Model Metrics

	Refactor Models to Improve Component Reuse
	Identify and Replace Clones with Links to Library Blocks
	Explore Other Options

	Simplify Model for Targeted Analysis of Complex Models Using Model Slicer Tool
	Assess Requirements-Based Testing Quality by Using the Model Testing Dashboard
	Open the Project and Model Testing Dashboard
	Assess Traceability of Artifacts
	Explore Metric Results for a Unit
	Track Testing Status of a Project Using the Model Testing Dashboard

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012
	Test Code Against Model Using Software-in-the-Loop Testing

	Limit Model Checks by Excluding Gain and Outport Blocks
	See Also

	Exclude Blocks from Edit Time Checking
	See Also

	Checking Systems Interactively
	Check Model Compliance by Using the Model Advisor
	Model Advisor Overview
	Run Model Advisor Checks and Review Results

	Check Model Compliance Using Edit-Time Checking
	Configure Your Model to Use Edit-Time Checking
	View and Customize the Edit-Time Checks in a Model Advisor Configuration

	Exclude Blocks from the Model Advisor Check Analysis
	Model Advisor Exclusion Overview
	Create Model Advisor Exclusions
	Save Model Advisor Exclusions in a Model File
	Save Model Advisor Exclusions in Exclusion File
	Check Selector
	Review Model Advisor Exclusions
	Manage Exclusions
	Compatibility Considerations after R2020b
	Programmatically Change Model Advisor Exclusions

	Justify Violated Blocks from the Model Advisor Check Analysis
	Model Advisor Justification Overview
	Create Model Advisor Justifications
	Manage Justifications

	Generate Model Advisor Reports
	Generate Results Report After Executing Model Advisor Checks
	Modify Template for Model Advisor Check Results Report

	Transform Model to Variant System
	Example Model
	Perform Variant Transform on Example Model
	Model Transformation Limitations

	Improve Code Efficiency by Merging Multiple Interpolation Using Prelookup Blocks
	Merge Interpolation Using Prelookup Blocks Using the Model Transformer App
	Merge Interpolation Using Prelookup Blocks Programmatically
	Conditions and Limitations

	Enable Component Reuse by Using Clone Detection
	Exact Clones and Similar Clones
	Specify Where to Detect Clones
	Identify Exact and Similar Clones
	Replace Clones
	Identify and Replace Clones in Model Libraries
	Check the Equivalency of the Model

	Improve Model Readability by Eliminating Local Data Store Blocks
	Example Model
	Replace Data Store Blocks
	Limitations

	Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks
	Example Model
	Merge Prelookup Operation
	Conditions and Limitations

	Model Checks for DO-178C/DO-331 Standard Compliance
	Model Checks for High Integrity Systems Modeling

	Model Checks for DO-254 Standard Compliance
	Model Checks for High Integrity Systems Modeling
	HDL Code Advisor Checks

	Model Checks for MAB and JMAAB Compliance
	Accessing the MAB and JMAAB Model Advisor Checks
	Modeling Guidelines and Model Advisor Checks for MAB and JMAAB

	Model Checks for High Integrity Systems Modeling
	High Integrity Systems Modeling Checks

	Model Checks for IEC 61508, IEC 62304, ISO 26262, ISO 25119, and EN 50128/EN 50657 Standard Compliance
	Model Checks for High Integrity Systems Modeling

	Model Checks for MISRA C:2012 Compliance
	Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)
	Model Checks for Requirements Links
	Replace Exact Clones with Subsystem Reference
	Identify Exact Clones
	Replace Clones
	Check the Equivalency of the Model

	Detect and Replace Subsystem Clones Programmatically
	Identify Clones in a Model
	Replace Clones in a Model
	Identify Clones Using Subsystem Reference Blocks
	Replace Clones with Conditions
	Check the Equivalency of the Model

	Find Clones Across the Model
	Identify Clones by Using the App
	Identify Clones Programmatically

	Detect Clones Programmatically on Multiple Models Across Different Folders
	Detect and Replace Clones Programmatically in a Loop on Multiple Models
	Running Clone Detection Custom Script in a Project
	Run Custom Model Advisor Checks on Architecture Models

	Check Systems Programmatically
	Checking Systems Programmatically
	Create a Function to Check Multiple Systems
	Archive and View Results
	Archive Results
	View Results in Command Window
	View Results in Model Advisor Command-Line Summary Report
	View Results in Model Advisor GUI
	View Model Advisor Report

	Archive and View Model Advisor Run Results

	Model Metrics
	Collect and Explore Metric Data by Using the Metrics Dashboard
	Metrics Dashboard Widgets
	Size
	Modeling Guideline Compliance
	Architecture
	Metric Thresholds
	Dashboard Limitations

	Collect Model Metrics Using the Model Advisor
	Create a Custom Model Metric for Nonvirtual Block Count
	Collect Model Metrics Programmatically
	Model Metric Data Aggregation
	How Model Metric Aggregation Works
	Access Aggregated Metric Data

	Identify Modeling Clones with the Metrics Dashboard
	Collect Compliance Data and Explore Results in the Model Advisor
	Collect Metric Data Programmatically and View Data Through the Metrics Dashboard
	Fix Metric Threshold Violations in a Continuous Integration Systems Workflow
	Project Setup
	GitLab Setup
	Jenkins Setup
	Continuous Integration Workflow

	Customize Metrics Dashboard Layout and Functionality
	Compare Model Complexity and Code Complexity Metrics
	Metric Threshold Values
	Comparing Code and Model Complexity Metric Results

	Explore Status and Quality of Testing Activities Using the Model Testing Dashboard
	Fix Requirements-Based Testing Issues
	Manage Requirements-Based Testing Artifacts for Analysis in the Model Testing Dashboard
	Manage Artifact Files in a Project
	Trace Dependencies Between Project Files and Identify Outdated Metric Results
	Trace Artifacts to Units for Model Testing Analysis
	Collect Metric Results

	Assess the Completeness of Requirements-Based Testing in Accordance with ISO 26262
	Open the Model Testing Dashboard and Collect Metric Results
	Test Case Review
	Test Results Review
	Unit Verification in Accordance with ISO 26262

	Collect Metrics on Model Testing Artifacts Programmatically
	Open the Project
	Collect Metric Results
	Access Results

	Categorize Models in a Hierarchy as Components or Units
	Units in the Model Testing Dashboard
	Components in the Model Testing Dashboard
	Specify Models as Components and Units

	Include Subsystem-Level Test Results in the Model Testing Dashboard
	Resolve Missing Artifacts, Links, and Results in the Model Testing Dashboard
	Issue
	Possible Solutions

	Collecting Requirements-Based Testing Metrics Using Continuous Integration
	Hide Requirements Metrics in the Model Testing Dashboard and in API Results
	Open the Dashboard for the Project
	Hide Requirements Metrics in the Model Testing Dashboard
	Hide Requirements Metrics in the API Results

	Create Model Advisor Checks
	Overview of the Customization File for Custom Checks
	Common Utilities for Creating Checks
	Review a Model Against Conditions that You Specify with the Model Advisor
	Create an sl_customization Function
	Create the Check Definition Function for a Pass/Fail Check with No Fix Action
	Create the Check Definition Function for an Informational Check
	Run the Custom Checks in the Model Advisor

	Define Edit-Time Checks to Comply with Conditions that You Specify with the Model Advisor
	Register and Define the Custom Edit-Time Checks
	Run the Edit-Time Checks on a Model
	Performance Considerations for Custom Edit-Time Checks

	Define Custom Edit-Time Checks that Fix Issues in Architecture Models
	Create a Simple Architecture Model
	Create the Custom Edit-Time Check
	Create a Custom Edit-Time Check Configuration

	Fix a Model to Comply with Conditions that You Specify with the Model Advisor
	Create the sl_customization File
	Create the Check Definition File
	Run the Check

	Create Model Advisor Check for Model Configuration Parameters
	Create a Data File for a Configuration Parameter Check
	Create Check for Diagnostics Pane Model Configuration Parameters
	Data File for Configuration Parameter Check

	Define Model Advisor Checks for Supported and Unsupported Blocks and Parameters
	Define Custom Model Advisor Checks
	Create sl_customization Function
	Register Custom Checks
	Create Check Definition Function

	Define the Compile Option for Custom Model Advisor Checks
	Checks that Evaluate the Code Generation Readiness of the Model
	Create Custom Check to Evaluate Active and Inactive Variant Paths from a Model

	Exclude Blocks From Custom Checks
	Create Help for Custom Model Advisor Checks
	See Also

	Model Advisor Customization
	Customize the Configuration of the Model Advisor Overview
	Use the Model Advisor Configuration Editor to Customize the Model Advisor
	Overview of the Model Advisor Configuration Editor
	Open the Model Advisor Configuration Editor
	Specify a Default Configuration File
	Customize the Model Advisor Configuration
	Suppress Warning Message for Missing Checks
	Use the Model Advisor Configuration Editor to Create a Custom Model Advisor Configuration

	Programmatically Customize Tasks and Folders for the Model Advisor
	Customization File Overview
	Register Tasks and Folders
	Define Custom Tasks
	Define Custom Folders

	Programmatically Create Procedural-Based Configurations
	Create Procedural-Based Configurations

	Update the Environment to Include Your Custom Configuration
	Load and Associate a Custom Configuration with a Model
	Deploy Custom Configurations
	Create and Deploy a Model Advisor Custom Configuration

	Model Slicer
	Highlight Functional Dependencies
	Highlight Dependencies for Multiple Instance Reference Models
	Refine Highlighted Model
	Define a Simulation Time Window
	Exclude Blocks
	Exclude Inputs of a Switch Block

	Refine Dead Logic for Dependency Analysis
	Analyze the Dead Logic

	Create a Simplified Standalone Model
	Highlight Active Time Intervals by Using Activity-Based Time Slicing
	Highlighting the Active Time Intervals of a Stateflow State or Transition
	Activity-Based Time Slicing Limitations and Considerations
	Stateflow State and Transition Activity

	Simplify a Standalone Model by Inlining Content
	Workflow for Dependency Analysis
	Dependency Analysis Workflow
	Dependency Analysis Objectives

	Configure Model Highlight and Sliced Models
	Model Slice Manager
	Model Slicer Options
	Storage Options
	Refresh Highlighting Automatically
	Sliced Model Options
	Trivial Subsystems
	Inline Content Options

	Model Slicer Considerations and Limitations
	Model Compilation
	Model Highlighting and Model Editing
	Standalone Sliced Model Generation
	Sliced Model Considerations
	Port Attribute Considerations
	Simulation Time Window Considerations
	Simulation-based Sliced Model Simplifications
	Starting Points Not Supported
	Model Slicer Support Limitations for Simulink Software Features
	Model Slicer Support Limitations for Simulation Stepper
	Model Slicer Support Limitations for Simulink Blocks
	Model Slicer Support Limitations for Stateflow

	Using Model Slicer with Stateflow
	Model Slicer Highlighting Behavior for Stateflow Elements
	Using Model Slicer with Stateflow State Transition Tables
	Support Limitations for Using Model Slicer with Stateflow

	Isolating Dependencies of an Actuator Subsystem
	Choose Starting Points and Direction
	View Precedents and Generate Model Slice

	Isolate Model Components for Functional Testing
	Isolate Subsystems for Functional Testing
	Isolate Referenced Model for Functional Testing

	Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results
	Simplification of Variant Systems
	Use the Variant Reducer to Simplify Variant Systems
	Use Model Slicer to Simplify Variant Systems

	Programmatically Resolve Unexpected Behavior in a Model with Model Slicer
	Refine Highlighted Model Slice by Using Model Slicer Data Inspector
	Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

	Debug Slice Simulation by Using Fast Restart Mode
	Simulate and Debug a Test Case in a Model Slice

	Isolate Referenced Model for Functional Testing
	Analyze the Dead Logic
	Investigate Highlighted Model Slice by Using Model Slicer Data Inspector
	Programmatically Generate I/O Dependency Matrix
	Observe Impact of Simulink Parameters Using Model Slicer

